333 lines
10 KiB
Python
333 lines
10 KiB
Python
from statsmodels.compat.python import lrange
|
|
|
|
from io import StringIO
|
|
from os import environ, makedirs
|
|
from os.path import abspath, dirname, exists, expanduser, join
|
|
import shutil
|
|
from urllib.error import HTTPError, URLError
|
|
from urllib.parse import urljoin
|
|
from urllib.request import urlopen
|
|
|
|
import numpy as np
|
|
from pandas import Index, read_csv, read_stata
|
|
|
|
|
|
def webuse(data, baseurl='https://www.stata-press.com/data/r11/', as_df=True):
|
|
"""
|
|
Download and return an example dataset from Stata.
|
|
|
|
Parameters
|
|
----------
|
|
data : str
|
|
Name of dataset to fetch.
|
|
baseurl : str
|
|
The base URL to the stata datasets.
|
|
as_df : bool
|
|
Deprecated. Always returns a DataFrame
|
|
|
|
Returns
|
|
-------
|
|
dta : DataFrame
|
|
A DataFrame containing the Stata dataset.
|
|
|
|
Examples
|
|
--------
|
|
>>> dta = webuse('auto')
|
|
|
|
Notes
|
|
-----
|
|
Make sure baseurl has trailing forward slash. Does not do any
|
|
error checking in response URLs.
|
|
"""
|
|
url = urljoin(baseurl, data+'.dta')
|
|
return read_stata(url)
|
|
|
|
|
|
class Dataset(dict):
|
|
def __init__(self, **kw):
|
|
# define some default attributes, so pylint can find them
|
|
self.endog = None
|
|
self.exog = None
|
|
self.data = None
|
|
self.names = None
|
|
|
|
dict.__init__(self, kw)
|
|
self.__dict__ = self
|
|
# Some datasets have string variables. If you want a raw_data
|
|
# attribute you must create this in the dataset's load function.
|
|
try: # some datasets have string variables
|
|
self.raw_data = self.data.astype(float)
|
|
except:
|
|
pass
|
|
|
|
def __repr__(self):
|
|
return str(self.__class__)
|
|
|
|
|
|
def process_pandas(data, endog_idx=0, exog_idx=None, index_idx=None):
|
|
names = data.columns
|
|
|
|
if isinstance(endog_idx, int):
|
|
endog_name = names[endog_idx]
|
|
endog = data[endog_name].copy()
|
|
if exog_idx is None:
|
|
exog = data.drop([endog_name], axis=1)
|
|
else:
|
|
exog = data[names[exog_idx]].copy()
|
|
else:
|
|
endog = data.loc[:, endog_idx].copy()
|
|
endog_name = list(endog.columns)
|
|
if exog_idx is None:
|
|
exog = data.drop(endog_name, axis=1)
|
|
elif isinstance(exog_idx, int):
|
|
exog = data[names[exog_idx]].copy()
|
|
else:
|
|
exog = data[names[exog_idx]].copy()
|
|
|
|
if index_idx is not None: # NOTE: will have to be improved for dates
|
|
index = Index(data.iloc[:, index_idx])
|
|
endog.index = index
|
|
exog.index = index.copy()
|
|
data = data.set_index(names[index_idx])
|
|
|
|
exog_name = list(exog.columns)
|
|
dataset = Dataset(data=data, names=list(names), endog=endog,
|
|
exog=exog, endog_name=endog_name, exog_name=exog_name)
|
|
return dataset
|
|
|
|
|
|
def _maybe_reset_index(data):
|
|
"""
|
|
All the Rdatasets have the integer row.labels from R if there is no
|
|
real index. Strip this for a zero-based index
|
|
"""
|
|
if data.index.equals(Index(lrange(1, len(data) + 1))):
|
|
data = data.reset_index(drop=True)
|
|
return data
|
|
|
|
|
|
def _get_cache(cache):
|
|
if cache is False:
|
|
# do not do any caching or load from cache
|
|
cache = None
|
|
elif cache is True: # use default dir for cache
|
|
cache = get_data_home(None)
|
|
else:
|
|
cache = get_data_home(cache)
|
|
return cache
|
|
|
|
|
|
def _cache_it(data, cache_path):
|
|
import zlib
|
|
with open(cache_path, "wb") as zf:
|
|
zf.write(zlib.compress(data))
|
|
|
|
|
|
def _open_cache(cache_path):
|
|
import zlib
|
|
# return as bytes object encoded in utf-8 for cross-compat of cached
|
|
with open(cache_path, 'rb') as zf:
|
|
return zlib.decompress(zf.read())
|
|
|
|
|
|
def _urlopen_cached(url, cache):
|
|
"""
|
|
Tries to load data from cache location otherwise downloads it. If it
|
|
downloads the data and cache is not None then it will put the downloaded
|
|
data in the cache path.
|
|
"""
|
|
from_cache = False
|
|
if cache is not None:
|
|
file_name = url.split("://")[-1].replace('/', ',')
|
|
file_name = file_name.split('.')
|
|
if len(file_name) > 1:
|
|
file_name[-2] += '-v2'
|
|
else:
|
|
file_name[0] += '-v2'
|
|
file_name = '.'.join(file_name) + ".zip"
|
|
cache_path = join(cache, file_name)
|
|
try:
|
|
data = _open_cache(cache_path)
|
|
from_cache = True
|
|
except:
|
|
pass
|
|
|
|
# not using the cache or did not find it in cache
|
|
if not from_cache:
|
|
data = urlopen(url, timeout=3).read()
|
|
if cache is not None: # then put it in the cache
|
|
_cache_it(data, cache_path)
|
|
return data, from_cache
|
|
|
|
|
|
def _get_data(base_url, dataname, cache, extension="csv"):
|
|
url = base_url + (dataname + ".%s") % extension
|
|
try:
|
|
data, from_cache = _urlopen_cached(url, cache)
|
|
except HTTPError as err:
|
|
if '404' in str(err):
|
|
raise ValueError("Dataset %s was not found." % dataname)
|
|
else:
|
|
raise err
|
|
|
|
data = data.decode('utf-8', 'strict')
|
|
return StringIO(data), from_cache
|
|
|
|
|
|
def _get_dataset_meta(dataname, package, cache):
|
|
# get the index, you'll probably want this cached because you have
|
|
# to download info about all the data to get info about any of the data...
|
|
index_url = ("https://raw.githubusercontent.com/vincentarelbundock/"
|
|
"Rdatasets/master/datasets.csv")
|
|
data, _ = _urlopen_cached(index_url, cache)
|
|
data = data.decode('utf-8', 'strict')
|
|
index = read_csv(StringIO(data))
|
|
idx = np.logical_and(index.Item == dataname, index.Package == package)
|
|
if not idx.any():
|
|
raise ValueError(
|
|
f"Item {dataname} from Package {package} was not found. Check "
|
|
f"the CSV file at {index_url} to verify the Item and Package."
|
|
)
|
|
dataset_meta = index.loc[idx]
|
|
return dataset_meta["Title"].iloc[0]
|
|
|
|
|
|
def get_rdataset(dataname, package="datasets", cache=False):
|
|
"""download and return R dataset
|
|
|
|
Parameters
|
|
----------
|
|
dataname : str
|
|
The name of the dataset you want to download
|
|
package : str
|
|
The package in which the dataset is found. The default is the core
|
|
'datasets' package.
|
|
cache : bool or str
|
|
If True, will download this data into the STATSMODELS_DATA folder.
|
|
The default location is a folder called statsmodels_data in the
|
|
user home folder. Otherwise, you can specify a path to a folder to
|
|
use for caching the data. If False, the data will not be cached.
|
|
|
|
Returns
|
|
-------
|
|
dataset : Dataset
|
|
A `statsmodels.data.utils.Dataset` instance. This objects has
|
|
attributes:
|
|
|
|
* data - A pandas DataFrame containing the data
|
|
* title - The dataset title
|
|
* package - The package from which the data came
|
|
* from_cache - Whether not cached data was retrieved
|
|
* __doc__ - The verbatim R documentation.
|
|
|
|
Notes
|
|
-----
|
|
If the R dataset has an integer index. This is reset to be zero-based.
|
|
Otherwise the index is preserved. The caching facilities are dumb. That
|
|
is, no download dates, e-tags, or otherwise identifying information
|
|
is checked to see if the data should be downloaded again or not. If the
|
|
dataset is in the cache, it's used.
|
|
"""
|
|
# NOTE: use raw github bc html site might not be most up to date
|
|
data_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
|
|
"master/csv/"+package+"/")
|
|
docs_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
|
|
"master/doc/"+package+"/rst/")
|
|
cache = _get_cache(cache)
|
|
data, from_cache = _get_data(data_base_url, dataname, cache)
|
|
data = read_csv(data, index_col=0)
|
|
data = _maybe_reset_index(data)
|
|
|
|
title = _get_dataset_meta(dataname, package, cache)
|
|
doc, _ = _get_data(docs_base_url, dataname, cache, "rst")
|
|
|
|
return Dataset(data=data, __doc__=doc.read(), package=package, title=title,
|
|
from_cache=from_cache)
|
|
|
|
# The below function were taken from sklearn
|
|
|
|
|
|
def get_data_home(data_home=None):
|
|
"""Return the path of the statsmodels data dir.
|
|
|
|
This folder is used by some large dataset loaders to avoid
|
|
downloading the data several times.
|
|
|
|
By default the data dir is set to a folder named 'statsmodels_data'
|
|
in the user home folder.
|
|
|
|
Alternatively, it can be set by the 'STATSMODELS_DATA' environment
|
|
variable or programatically by giving an explicit folder path. The
|
|
'~' symbol is expanded to the user home folder.
|
|
|
|
If the folder does not already exist, it is automatically created.
|
|
"""
|
|
if data_home is None:
|
|
data_home = environ.get('STATSMODELS_DATA',
|
|
join('~', 'statsmodels_data'))
|
|
data_home = expanduser(data_home)
|
|
if not exists(data_home):
|
|
makedirs(data_home)
|
|
return data_home
|
|
|
|
|
|
def clear_data_home(data_home=None):
|
|
"""Delete all the content of the data home cache."""
|
|
data_home = get_data_home(data_home)
|
|
shutil.rmtree(data_home)
|
|
|
|
|
|
def check_internet(url=None):
|
|
"""Check if internet is available"""
|
|
url = "https://github.com" if url is None else url
|
|
try:
|
|
urlopen(url)
|
|
except URLError as err:
|
|
return False
|
|
return True
|
|
|
|
|
|
def strip_column_names(df):
|
|
"""
|
|
Remove leading and trailing single quotes
|
|
|
|
Parameters
|
|
----------
|
|
df : DataFrame
|
|
DataFrame to process
|
|
|
|
Returns
|
|
-------
|
|
df : DataFrame
|
|
DataFrame with stripped column names
|
|
|
|
Notes
|
|
-----
|
|
In-place modification
|
|
"""
|
|
columns = []
|
|
for c in df:
|
|
if c.startswith('\'') and c.endswith('\''):
|
|
c = c[1:-1]
|
|
elif c.startswith('\''):
|
|
c = c[1:]
|
|
elif c.endswith('\''):
|
|
c = c[:-1]
|
|
columns.append(c)
|
|
df.columns = columns
|
|
return df
|
|
|
|
|
|
def load_csv(base_file, csv_name, sep=',', convert_float=False):
|
|
"""Standard simple csv loader"""
|
|
filepath = dirname(abspath(base_file))
|
|
filename = join(filepath,csv_name)
|
|
engine = 'python' if sep != ',' else 'c'
|
|
float_precision = {}
|
|
if engine == 'c':
|
|
float_precision = {'float_precision': 'high'}
|
|
data = read_csv(filename, sep=sep, engine=engine, **float_precision)
|
|
if convert_float:
|
|
data = data.astype(float)
|
|
return data
|