AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/seaborn/_stats/density.py
2024-10-02 22:15:59 +04:00

215 lines
8.5 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Callable
import numpy as np
from numpy import ndarray
import pandas as pd
from pandas import DataFrame
try:
from scipy.stats import gaussian_kde
_no_scipy = False
except ImportError:
from seaborn.external.kde import gaussian_kde
_no_scipy = True
from seaborn._core.groupby import GroupBy
from seaborn._core.scales import Scale
from seaborn._stats.base import Stat
@dataclass
class KDE(Stat):
"""
Compute a univariate kernel density estimate.
Parameters
----------
bw_adjust : float
Factor that multiplicatively scales the value chosen using
`bw_method`. Increasing will make the curve smoother. See Notes.
bw_method : string, scalar, or callable
Method for determining the smoothing bandwidth to use. Passed directly
to :class:`scipy.stats.gaussian_kde`; see there for options.
common_norm : bool or list of variables
If `True`, normalize so that the areas of all curves sums to 1.
If `False`, normalize each curve independently. If a list, defines
variable(s) to group by and normalize within.
common_grid : bool or list of variables
If `True`, all curves will share the same evaluation grid.
If `False`, each evaluation grid is independent. If a list, defines
variable(s) to group by and share a grid within.
gridsize : int or None
Number of points in the evaluation grid. If None, the density is
evaluated at the original datapoints.
cut : float
Factor, multiplied by the kernel bandwidth, that determines how far
the evaluation grid extends past the extreme datapoints. When set to 0,
the curve is truncated at the data limits.
cumulative : bool
If True, estimate a cumulative distribution function. Requires scipy.
Notes
-----
The *bandwidth*, or standard deviation of the smoothing kernel, is an
important parameter. Much like histogram bin width, using the wrong
bandwidth can produce a distorted representation. Over-smoothing can erase
true features, while under-smoothing can create false ones. The default
uses a rule-of-thumb that works best for distributions that are roughly
bell-shaped. It is a good idea to check the default by varying `bw_adjust`.
Because the smoothing is performed with a Gaussian kernel, the estimated
density curve can extend to values that may not make sense. For example, the
curve may be drawn over negative values when data that are naturally
positive. The `cut` parameter can be used to control the evaluation range,
but datasets that have many observations close to a natural boundary may be
better served by a different method.
Similar distortions may arise when a dataset is naturally discrete or "spiky"
(containing many repeated observations of the same value). KDEs will always
produce a smooth curve, which could be misleading.
The units on the density axis are a common source of confusion. While kernel
density estimation produces a probability distribution, the height of the curve
at each point gives a density, not a probability. A probability can be obtained
only by integrating the density across a range. The curve is normalized so
that the integral over all possible values is 1, meaning that the scale of
the density axis depends on the data values.
If scipy is installed, its cython-accelerated implementation will be used.
Examples
--------
.. include:: ../docstrings/objects.KDE.rst
"""
bw_adjust: float = 1
bw_method: str | float | Callable[[gaussian_kde], float] = "scott"
common_norm: bool | list[str] = True
common_grid: bool | list[str] = True
gridsize: int | None = 200
cut: float = 3
cumulative: bool = False
def __post_init__(self):
if self.cumulative and _no_scipy:
raise RuntimeError("Cumulative KDE evaluation requires scipy")
def _check_var_list_or_boolean(self, param: str, grouping_vars: Any) -> None:
"""Do input checks on grouping parameters."""
value = getattr(self, param)
if not (
isinstance(value, bool)
or (isinstance(value, list) and all(isinstance(v, str) for v in value))
):
param_name = f"{self.__class__.__name__}.{param}"
raise TypeError(f"{param_name} must be a boolean or list of strings.")
self._check_grouping_vars(param, grouping_vars, stacklevel=3)
def _fit(self, data: DataFrame, orient: str) -> gaussian_kde:
"""Fit and return a KDE object."""
# TODO need to handle singular data
fit_kws: dict[str, Any] = {"bw_method": self.bw_method}
if "weight" in data:
fit_kws["weights"] = data["weight"]
kde = gaussian_kde(data[orient], **fit_kws)
kde.set_bandwidth(kde.factor * self.bw_adjust)
return kde
def _get_support(self, data: DataFrame, orient: str) -> ndarray:
"""Define the grid that the KDE will be evaluated on."""
if self.gridsize is None:
return data[orient].to_numpy()
kde = self._fit(data, orient)
bw = np.sqrt(kde.covariance.squeeze())
gridmin = data[orient].min() - bw * self.cut
gridmax = data[orient].max() + bw * self.cut
return np.linspace(gridmin, gridmax, self.gridsize)
def _fit_and_evaluate(
self, data: DataFrame, orient: str, support: ndarray
) -> DataFrame:
"""Transform single group by fitting a KDE and evaluating on a support grid."""
empty = pd.DataFrame(columns=[orient, "weight", "density"], dtype=float)
if len(data) < 2:
return empty
try:
kde = self._fit(data, orient)
except np.linalg.LinAlgError:
return empty
if self.cumulative:
s_0 = support[0]
density = np.array([kde.integrate_box_1d(s_0, s_i) for s_i in support])
else:
density = kde(support)
weight = data["weight"].sum()
return pd.DataFrame({orient: support, "weight": weight, "density": density})
def _transform(
self, data: DataFrame, orient: str, grouping_vars: list[str]
) -> DataFrame:
"""Transform multiple groups by fitting KDEs and evaluating."""
empty = pd.DataFrame(columns=[*data.columns, "density"], dtype=float)
if len(data) < 2:
return empty
try:
support = self._get_support(data, orient)
except np.linalg.LinAlgError:
return empty
grouping_vars = [x for x in grouping_vars if data[x].nunique() > 1]
if not grouping_vars:
return self._fit_and_evaluate(data, orient, support)
groupby = GroupBy(grouping_vars)
return groupby.apply(data, self._fit_and_evaluate, orient, support)
def __call__(
self, data: DataFrame, groupby: GroupBy, orient: str, scales: dict[str, Scale],
) -> DataFrame:
if "weight" not in data:
data = data.assign(weight=1)
data = data.dropna(subset=[orient, "weight"])
# Transform each group separately
grouping_vars = [str(v) for v in data if v in groupby.order]
if not grouping_vars or self.common_grid is True:
res = self._transform(data, orient, grouping_vars)
else:
if self.common_grid is False:
grid_vars = grouping_vars
else:
self._check_var_list_or_boolean("common_grid", grouping_vars)
grid_vars = [v for v in self.common_grid if v in grouping_vars]
res = (
GroupBy(grid_vars)
.apply(data, self._transform, orient, grouping_vars)
)
# Normalize, potentially within groups
if not grouping_vars or self.common_norm is True:
res = res.assign(group_weight=data["weight"].sum())
else:
if self.common_norm is False:
norm_vars = grouping_vars
else:
self._check_var_list_or_boolean("common_norm", grouping_vars)
norm_vars = [v for v in self.common_norm if v in grouping_vars]
res = res.join(
data.groupby(norm_vars)["weight"].sum().rename("group_weight"),
on=norm_vars,
)
res["density"] *= res.eval("weight / group_weight")
value = {"x": "y", "y": "x"}[orient]
res[value] = res["density"]
return res.drop(["weight", "group_weight"], axis=1)