AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/seaborn/_stats/base.py
2024-10-02 22:15:59 +04:00

66 lines
2.6 KiB
Python

"""Base module for statistical transformations."""
from __future__ import annotations
from collections.abc import Iterable
from dataclasses import dataclass
from typing import ClassVar, Any
import warnings
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from pandas import DataFrame
from seaborn._core.groupby import GroupBy
from seaborn._core.scales import Scale
@dataclass
class Stat:
"""Base class for objects that apply statistical transformations."""
# The class supports a partial-function application pattern. The object is
# initialized with desired parameters and the result is a callable that
# accepts and returns dataframes.
# The statistical transformation logic should not add any state to the instance
# beyond what is defined with the initialization parameters.
# Subclasses can declare whether the orient dimension should be used in grouping
# TODO consider whether this should be a parameter. Motivating example:
# use the same KDE class violin plots and univariate density estimation.
# In the former case, we would expect separate densities for each unique
# value on the orient axis, but we would not in the latter case.
group_by_orient: ClassVar[bool] = False
def _check_param_one_of(self, param: str, options: Iterable[Any]) -> None:
"""Raise when parameter value is not one of a specified set."""
value = getattr(self, param)
if value not in options:
*most, last = options
option_str = ", ".join(f"{x!r}" for x in most[:-1]) + f" or {last!r}"
err = " ".join([
f"The `{param}` parameter for `{self.__class__.__name__}` must be",
f"one of {option_str}; not {value!r}.",
])
raise ValueError(err)
def _check_grouping_vars(
self, param: str, data_vars: list[str], stacklevel: int = 2,
) -> None:
"""Warn if vars are named in parameter without being present in the data."""
param_vars = getattr(self, param)
undefined = set(param_vars) - set(data_vars)
if undefined:
param = f"{self.__class__.__name__}.{param}"
names = ", ".join(f"{x!r}" for x in undefined)
msg = f"Undefined variable(s) passed for {param}: {names}."
warnings.warn(msg, stacklevel=stacklevel)
def __call__(
self,
data: DataFrame,
groupby: GroupBy,
orient: str,
scales: dict[str, Scale],
) -> DataFrame:
"""Apply statistical transform to data subgroups and return combined result."""
return data