AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/stats/tests/test_rank.py
2024-10-02 22:15:59 +04:00

339 lines
12 KiB
Python

import numpy as np
from numpy.testing import assert_equal, assert_array_equal
import pytest
from scipy.conftest import skip_xp_invalid_arg
from scipy.stats import rankdata, tiecorrect
from scipy._lib._util import np_long
class TestTieCorrect:
def test_empty(self):
"""An empty array requires no correction, should return 1.0."""
ranks = np.array([], dtype=np.float64)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_one(self):
"""A single element requires no correction, should return 1.0."""
ranks = np.array([1.0], dtype=np.float64)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_no_correction(self):
"""Arrays with no ties require no correction."""
ranks = np.arange(2.0)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
ranks = np.arange(3.0)
c = tiecorrect(ranks)
assert_equal(c, 1.0)
def test_basic(self):
"""Check a few basic examples of the tie correction factor."""
# One tie of two elements
ranks = np.array([1.0, 2.5, 2.5])
c = tiecorrect(ranks)
T = 2.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# One tie of two elements (same as above, but tie is not at the end)
ranks = np.array([1.5, 1.5, 3.0])
c = tiecorrect(ranks)
T = 2.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# One tie of three elements
ranks = np.array([1.0, 3.0, 3.0, 3.0])
c = tiecorrect(ranks)
T = 3.0
N = ranks.size
expected = 1.0 - (T**3 - T) / (N**3 - N)
assert_equal(c, expected)
# Two ties, lengths 2 and 3.
ranks = np.array([1.5, 1.5, 4.0, 4.0, 4.0])
c = tiecorrect(ranks)
T1 = 2.0
T2 = 3.0
N = ranks.size
expected = 1.0 - ((T1**3 - T1) + (T2**3 - T2)) / (N**3 - N)
assert_equal(c, expected)
def test_overflow(self):
ntie, k = 2000, 5
a = np.repeat(np.arange(k), ntie)
n = a.size # ntie * k
out = tiecorrect(rankdata(a))
assert_equal(out, 1.0 - k * (ntie**3 - ntie) / float(n**3 - n))
class TestRankData:
def test_empty(self):
"""stats.rankdata([]) should return an empty array."""
a = np.array([], dtype=int)
r = rankdata(a)
assert_array_equal(r, np.array([], dtype=np.float64))
r = rankdata([])
assert_array_equal(r, np.array([], dtype=np.float64))
@pytest.mark.parametrize("shape", [(0, 1, 2)])
@pytest.mark.parametrize("axis", [None, *range(3)])
def test_empty_multidim(self, shape, axis):
a = np.empty(shape, dtype=int)
r = rankdata(a, axis=axis)
expected_shape = (0,) if axis is None else shape
assert_equal(r.shape, expected_shape)
assert_equal(r.dtype, np.float64)
def test_one(self):
"""Check stats.rankdata with an array of length 1."""
data = [100]
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, np.array([1.0], dtype=np.float64))
r = rankdata(data)
assert_array_equal(r, np.array([1.0], dtype=np.float64))
def test_basic(self):
"""Basic tests of stats.rankdata."""
data = [100, 10, 50]
expected = np.array([3.0, 1.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
data = [40, 10, 30, 10, 50]
expected = np.array([4.0, 1.5, 3.0, 1.5, 5.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
data = [20, 20, 20, 10, 10, 10]
expected = np.array([5.0, 5.0, 5.0, 2.0, 2.0, 2.0], dtype=np.float64)
a = np.array(data, dtype=int)
r = rankdata(a)
assert_array_equal(r, expected)
r = rankdata(data)
assert_array_equal(r, expected)
# The docstring states explicitly that the argument is flattened.
a2d = a.reshape(2, 3)
r = rankdata(a2d)
assert_array_equal(r, expected)
@skip_xp_invalid_arg
def test_rankdata_object_string(self):
def min_rank(a):
return [1 + sum(i < j for i in a) for j in a]
def max_rank(a):
return [sum(i <= j for i in a) for j in a]
def ordinal_rank(a):
return min_rank([(x, i) for i, x in enumerate(a)])
def average_rank(a):
return [(i + j) / 2.0 for i, j in zip(min_rank(a), max_rank(a))]
def dense_rank(a):
b = np.unique(a)
return [1 + sum(i < j for i in b) for j in a]
rankf = dict(min=min_rank, max=max_rank, ordinal=ordinal_rank,
average=average_rank, dense=dense_rank)
def check_ranks(a):
for method in 'min', 'max', 'dense', 'ordinal', 'average':
out = rankdata(a, method=method)
assert_array_equal(out, rankf[method](a))
val = ['foo', 'bar', 'qux', 'xyz', 'abc', 'efg', 'ace', 'qwe', 'qaz']
check_ranks(np.random.choice(val, 200))
check_ranks(np.random.choice(val, 200).astype('object'))
val = np.array([0, 1, 2, 2.718, 3, 3.141], dtype='object')
check_ranks(np.random.choice(val, 200).astype('object'))
def test_large_int(self):
data = np.array([2**60, 2**60+1], dtype=np.uint64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, 2**60+1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [1.0, 2.0])
data = np.array([2**60, -2**60+1], dtype=np.int64)
r = rankdata(data)
assert_array_equal(r, [2.0, 1.0])
def test_big_tie(self):
for n in [10000, 100000, 1000000]:
data = np.ones(n, dtype=int)
r = rankdata(data)
expected_rank = 0.5 * (n + 1)
assert_array_equal(r, expected_rank * data,
"test failed with n=%d" % n)
def test_axis(self):
data = [[0, 2, 1],
[4, 2, 2]]
expected0 = [[1., 1.5, 1.],
[2., 1.5, 2.]]
r0 = rankdata(data, axis=0)
assert_array_equal(r0, expected0)
expected1 = [[1., 3., 2.],
[3., 1.5, 1.5]]
r1 = rankdata(data, axis=1)
assert_array_equal(r1, expected1)
methods = ["average", "min", "max", "dense", "ordinal"]
dtypes = [np.float64] + [np_long]*4
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("method, dtype", zip(methods, dtypes))
def test_size_0_axis(self, axis, method, dtype):
shape = (3, 0)
data = np.zeros(shape)
r = rankdata(data, method=method, axis=axis)
assert_equal(r.shape, shape)
assert_equal(r.dtype, dtype)
@pytest.mark.parametrize('axis', range(3))
@pytest.mark.parametrize('method', methods)
def test_nan_policy_omit_3d(self, axis, method):
shape = (20, 21, 22)
rng = np.random.RandomState(23983242)
a = rng.random(size=shape)
i = rng.random(size=shape) < 0.4
j = rng.random(size=shape) < 0.1
k = rng.random(size=shape) < 0.1
a[i] = np.nan
a[j] = -np.inf
a[k] - np.inf
def rank_1d_omit(a, method):
out = np.zeros_like(a)
i = np.isnan(a)
a_compressed = a[~i]
res = rankdata(a_compressed, method)
out[~i] = res
out[i] = np.nan
return out
def rank_omit(a, method, axis):
return np.apply_along_axis(lambda a: rank_1d_omit(a, method),
axis, a)
res = rankdata(a, method, axis=axis, nan_policy='omit')
res0 = rank_omit(a, method, axis=axis)
assert_array_equal(res, res0)
def test_nan_policy_2d_axis_none(self):
# 2 2d-array test with axis=None
data = [[0, np.nan, 3],
[4, 2, np.nan],
[1, 2, 2]]
assert_array_equal(rankdata(data, axis=None, nan_policy='omit'),
[1., np.nan, 6., 7., 4., np.nan, 2., 4., 4.])
assert_array_equal(rankdata(data, axis=None, nan_policy='propagate'),
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan])
def test_nan_policy_raise(self):
# 1 1d-array test
data = [0, 2, 3, -2, np.nan, np.nan]
with pytest.raises(ValueError, match="The input contains nan"):
rankdata(data, nan_policy='raise')
# 2 2d-array test
data = [[0, np.nan, 3],
[4, 2, np.nan],
[np.nan, 2, 2]]
with pytest.raises(ValueError, match="The input contains nan"):
rankdata(data, axis=0, nan_policy="raise")
with pytest.raises(ValueError, match="The input contains nan"):
rankdata(data, axis=1, nan_policy="raise")
def test_nan_policy_propagate(self):
# 1 1d-array test
data = [0, 2, 3, -2, np.nan, np.nan]
assert_array_equal(rankdata(data, nan_policy='propagate'),
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])
# 2 2d-array test
data = [[0, np.nan, 3],
[4, 2, np.nan],
[1, 2, 2]]
assert_array_equal(rankdata(data, axis=0, nan_policy='propagate'),
[[1, np.nan, np.nan],
[3, np.nan, np.nan],
[2, np.nan, np.nan]])
assert_array_equal(rankdata(data, axis=1, nan_policy='propagate'),
[[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[1, 2.5, 2.5]])
_cases = (
# values, method, expected
([], 'average', []),
([], 'min', []),
([], 'max', []),
([], 'dense', []),
([], 'ordinal', []),
#
([100], 'average', [1.0]),
([100], 'min', [1.0]),
([100], 'max', [1.0]),
([100], 'dense', [1.0]),
([100], 'ordinal', [1.0]),
#
([100, 100, 100], 'average', [2.0, 2.0, 2.0]),
([100, 100, 100], 'min', [1.0, 1.0, 1.0]),
([100, 100, 100], 'max', [3.0, 3.0, 3.0]),
([100, 100, 100], 'dense', [1.0, 1.0, 1.0]),
([100, 100, 100], 'ordinal', [1.0, 2.0, 3.0]),
#
([100, 300, 200], 'average', [1.0, 3.0, 2.0]),
([100, 300, 200], 'min', [1.0, 3.0, 2.0]),
([100, 300, 200], 'max', [1.0, 3.0, 2.0]),
([100, 300, 200], 'dense', [1.0, 3.0, 2.0]),
([100, 300, 200], 'ordinal', [1.0, 3.0, 2.0]),
#
([100, 200, 300, 200], 'average', [1.0, 2.5, 4.0, 2.5]),
([100, 200, 300, 200], 'min', [1.0, 2.0, 4.0, 2.0]),
([100, 200, 300, 200], 'max', [1.0, 3.0, 4.0, 3.0]),
([100, 200, 300, 200], 'dense', [1.0, 2.0, 3.0, 2.0]),
([100, 200, 300, 200], 'ordinal', [1.0, 2.0, 4.0, 3.0]),
#
([100, 200, 300, 200, 100], 'average', [1.5, 3.5, 5.0, 3.5, 1.5]),
([100, 200, 300, 200, 100], 'min', [1.0, 3.0, 5.0, 3.0, 1.0]),
([100, 200, 300, 200, 100], 'max', [2.0, 4.0, 5.0, 4.0, 2.0]),
([100, 200, 300, 200, 100], 'dense', [1.0, 2.0, 3.0, 2.0, 1.0]),
([100, 200, 300, 200, 100], 'ordinal', [1.0, 3.0, 5.0, 4.0, 2.0]),
#
([10] * 30, 'ordinal', np.arange(1.0, 31.0)),
)
def test_cases():
for values, method, expected in _cases:
r = rankdata(values, method=method)
assert_array_equal(r, expected)