247 lines
8.4 KiB
Python
247 lines
8.4 KiB
Python
import warnings
|
|
import numpy as np
|
|
|
|
from scipy import stats
|
|
from ._stats_py import _get_pvalue, _rankdata, _SimpleNormal
|
|
from . import _morestats
|
|
from ._axis_nan_policy import _broadcast_arrays
|
|
from ._hypotests import _get_wilcoxon_distr
|
|
from scipy._lib._util import _lazywhere, _get_nan
|
|
|
|
|
|
class WilcoxonDistribution:
|
|
|
|
def __init__(self, n):
|
|
n = np.asarray(n).astype(int, copy=False)
|
|
self.n = n
|
|
self._dists = {ni: _get_wilcoxon_distr(ni) for ni in np.unique(n)}
|
|
|
|
def _cdf1(self, k, n):
|
|
pmfs = self._dists[n]
|
|
return pmfs[:k + 1].sum()
|
|
|
|
def _cdf(self, k, n):
|
|
return np.vectorize(self._cdf1, otypes=[float])(k, n)
|
|
|
|
def _sf1(self, k, n):
|
|
pmfs = self._dists[n]
|
|
return pmfs[k:].sum()
|
|
|
|
def _sf(self, k, n):
|
|
return np.vectorize(self._sf1, otypes=[float])(k, n)
|
|
|
|
def mean(self):
|
|
return self.n * (self.n + 1) / 4
|
|
|
|
def _prep(self, k):
|
|
k = np.asarray(k).astype(int, copy=False)
|
|
mn = self.mean()
|
|
out = np.empty(k.shape, dtype=np.float64)
|
|
return k, mn, out
|
|
|
|
def cdf(self, k):
|
|
k, mn, out = self._prep(k)
|
|
return _lazywhere(k <= mn, (k, self.n), self._cdf,
|
|
f2=lambda k, n: 1 - self._sf(k+1, n))[()]
|
|
|
|
def sf(self, k):
|
|
k, mn, out = self._prep(k)
|
|
return _lazywhere(k <= mn, (k, self.n), self._sf,
|
|
f2=lambda k, n: 1 - self._cdf(k-1, n))[()]
|
|
|
|
|
|
def _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis):
|
|
|
|
axis = np.asarray(axis)[()]
|
|
message = "`axis` must be an integer."
|
|
if not np.issubdtype(axis.dtype, np.integer) or axis.ndim != 0:
|
|
raise ValueError(message)
|
|
|
|
message = '`axis` must be compatible with the shape(s) of `x` (and `y`)'
|
|
try:
|
|
if y is None:
|
|
x = np.asarray(x)
|
|
d = x
|
|
else:
|
|
x, y = _broadcast_arrays((x, y), axis=axis)
|
|
d = x - y
|
|
d = np.moveaxis(d, axis, -1)
|
|
except np.AxisError as e:
|
|
raise ValueError(message) from e
|
|
|
|
message = "`x` and `y` must have the same length along `axis`."
|
|
if y is not None and x.shape[axis] != y.shape[axis]:
|
|
raise ValueError(message)
|
|
|
|
message = "`x` (and `y`, if provided) must be an array of real numbers."
|
|
if np.issubdtype(d.dtype, np.integer):
|
|
d = d.astype(np.float64)
|
|
if not np.issubdtype(d.dtype, np.floating):
|
|
raise ValueError(message)
|
|
|
|
zero_method = str(zero_method).lower()
|
|
zero_methods = {"wilcox", "pratt", "zsplit"}
|
|
message = f"`zero_method` must be one of {zero_methods}."
|
|
if zero_method not in zero_methods:
|
|
raise ValueError(message)
|
|
|
|
corrections = {True, False}
|
|
message = f"`correction` must be one of {corrections}."
|
|
if correction not in corrections:
|
|
raise ValueError(message)
|
|
|
|
alternative = str(alternative).lower()
|
|
alternatives = {"two-sided", "less", "greater"}
|
|
message = f"`alternative` must be one of {alternatives}."
|
|
if alternative not in alternatives:
|
|
raise ValueError(message)
|
|
|
|
if not isinstance(method, stats.PermutationMethod):
|
|
methods = {"auto", "approx", "exact"}
|
|
message = (f"`method` must be one of {methods} or "
|
|
"an instance of `stats.PermutationMethod`.")
|
|
if method not in methods:
|
|
raise ValueError(message)
|
|
output_z = True if method == 'approx' else False
|
|
|
|
# logic unchanged here for backward compatibility
|
|
n_zero = np.sum(d == 0, axis=-1)
|
|
has_zeros = np.any(n_zero > 0)
|
|
if method == "auto":
|
|
if d.shape[-1] <= 50 and not has_zeros:
|
|
method = "exact"
|
|
else:
|
|
method = "approx"
|
|
|
|
n_zero = np.sum(d == 0)
|
|
if n_zero > 0 and method == "exact":
|
|
method = "approx"
|
|
warnings.warn("Exact p-value calculation does not work if there are "
|
|
"zeros. Switching to normal approximation.",
|
|
stacklevel=2)
|
|
|
|
if (method == "approx" and zero_method in ["wilcox", "pratt"]
|
|
and n_zero == d.size and d.size > 0 and d.ndim == 1):
|
|
raise ValueError("zero_method 'wilcox' and 'pratt' do not "
|
|
"work if x - y is zero for all elements.")
|
|
|
|
if 0 < d.shape[-1] < 10 and method == "approx":
|
|
warnings.warn("Sample size too small for normal approximation.", stacklevel=2)
|
|
|
|
return d, zero_method, correction, alternative, method, axis, output_z
|
|
|
|
|
|
def _wilcoxon_statistic(d, zero_method='wilcox'):
|
|
|
|
i_zeros = (d == 0)
|
|
|
|
if zero_method == 'wilcox':
|
|
# Wilcoxon's method for treating zeros was to remove them from
|
|
# the calculation. We do this by replacing 0s with NaNs, which
|
|
# are ignored anyway.
|
|
if not d.flags['WRITEABLE']:
|
|
d = d.copy()
|
|
d[i_zeros] = np.nan
|
|
|
|
i_nan = np.isnan(d)
|
|
n_nan = np.sum(i_nan, axis=-1)
|
|
count = d.shape[-1] - n_nan
|
|
|
|
r, t = _rankdata(abs(d), 'average', return_ties=True)
|
|
|
|
r_plus = np.sum((d > 0) * r, axis=-1)
|
|
r_minus = np.sum((d < 0) * r, axis=-1)
|
|
|
|
if zero_method == "zsplit":
|
|
# The "zero-split" method for treating zeros is to add half their contribution
|
|
# to r_plus and half to r_minus.
|
|
# See gh-2263 for the origin of this method.
|
|
r_zero_2 = np.sum(i_zeros * r, axis=-1) / 2
|
|
r_plus += r_zero_2
|
|
r_minus += r_zero_2
|
|
|
|
mn = count * (count + 1.) * 0.25
|
|
se = count * (count + 1.) * (2. * count + 1.)
|
|
|
|
if zero_method == "pratt":
|
|
# Pratt's method for treating zeros was just to modify the z-statistic.
|
|
|
|
# normal approximation needs to be adjusted, see Cureton (1967)
|
|
n_zero = i_zeros.sum(axis=-1)
|
|
mn -= n_zero * (n_zero + 1.) * 0.25
|
|
se -= n_zero * (n_zero + 1.) * (2. * n_zero + 1.)
|
|
|
|
# zeros are not to be included in tie-correction.
|
|
# any tie counts corresponding with zeros are in the 0th column
|
|
t[i_zeros.any(axis=-1), 0] = 0
|
|
|
|
tie_correct = (t**3 - t).sum(axis=-1)
|
|
se -= tie_correct/2
|
|
se = np.sqrt(se / 24)
|
|
|
|
z = (r_plus - mn) / se
|
|
|
|
return r_plus, r_minus, se, z, count
|
|
|
|
|
|
def _correction_sign(z, alternative):
|
|
if alternative == 'greater':
|
|
return 1
|
|
elif alternative == 'less':
|
|
return -1
|
|
else:
|
|
return np.sign(z)
|
|
|
|
|
|
def _wilcoxon_nd(x, y=None, zero_method='wilcox', correction=True,
|
|
alternative='two-sided', method='auto', axis=0):
|
|
|
|
temp = _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis)
|
|
d, zero_method, correction, alternative, method, axis, output_z = temp
|
|
|
|
if d.size == 0:
|
|
NaN = _get_nan(d)
|
|
res = _morestats.WilcoxonResult(statistic=NaN, pvalue=NaN)
|
|
if method == 'approx':
|
|
res.zstatistic = NaN
|
|
return res
|
|
|
|
r_plus, r_minus, se, z, count = _wilcoxon_statistic(d, zero_method)
|
|
|
|
if method == 'approx':
|
|
if correction:
|
|
sign = _correction_sign(z, alternative)
|
|
z -= sign * 0.5 / se
|
|
p = _get_pvalue(z, _SimpleNormal(), alternative, xp=np)
|
|
elif method == 'exact':
|
|
dist = WilcoxonDistribution(count)
|
|
# The null distribution in `dist` is exact only if there are no ties
|
|
# or zeros. If there are ties or zeros, the statistic can be non-
|
|
# integral, but the null distribution is only defined for integral
|
|
# values of the statistic. Therefore, we're conservative: round
|
|
# non-integral statistic up before computing CDF and down before
|
|
# computing SF. This preserves symmetry w.r.t. alternatives and
|
|
# order of the input arguments. See gh-19872.
|
|
if alternative == 'less':
|
|
p = dist.cdf(np.ceil(r_plus))
|
|
elif alternative == 'greater':
|
|
p = dist.sf(np.floor(r_plus))
|
|
else:
|
|
p = 2 * np.minimum(dist.sf(np.floor(r_plus)),
|
|
dist.cdf(np.ceil(r_plus)))
|
|
p = np.clip(p, 0, 1)
|
|
else: # `PermutationMethod` instance (already validated)
|
|
p = stats.permutation_test(
|
|
(d,), lambda d: _wilcoxon_statistic(d, zero_method)[0],
|
|
permutation_type='samples', **method._asdict(),
|
|
alternative=alternative, axis=-1).pvalue
|
|
|
|
# for backward compatibility...
|
|
statistic = np.minimum(r_plus, r_minus) if alternative=='two-sided' else r_plus
|
|
z = -np.abs(z) if (alternative == 'two-sided' and method == 'approx') else z
|
|
|
|
res = _morestats.WilcoxonResult(statistic=statistic, pvalue=p[()])
|
|
if output_z:
|
|
res.zstatistic = z[()]
|
|
return res
|