3664 lines
120 KiB
Python
3664 lines
120 KiB
Python
"""
|
|
An extension of scipy.stats._stats_py to support masked arrays
|
|
|
|
"""
|
|
# Original author (2007): Pierre GF Gerard-Marchant
|
|
|
|
|
|
__all__ = ['argstoarray',
|
|
'count_tied_groups',
|
|
'describe',
|
|
'f_oneway', 'find_repeats','friedmanchisquare',
|
|
'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
|
|
'ks_twosamp', 'ks_2samp', 'kurtosis', 'kurtosistest',
|
|
'ks_1samp', 'kstest',
|
|
'linregress',
|
|
'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
|
|
'normaltest',
|
|
'obrientransform',
|
|
'pearsonr','plotting_positions','pointbiserialr',
|
|
'rankdata',
|
|
'scoreatpercentile','sem',
|
|
'sen_seasonal_slopes','skew','skewtest','spearmanr',
|
|
'siegelslopes', 'theilslopes',
|
|
'tmax','tmean','tmin','trim','trimboth',
|
|
'trimtail','trima','trimr','trimmed_mean','trimmed_std',
|
|
'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
|
|
'ttest_ind','ttest_rel','tvar',
|
|
'variation',
|
|
'winsorize',
|
|
'brunnermunzel',
|
|
]
|
|
|
|
import numpy as np
|
|
from numpy import ndarray
|
|
import numpy.ma as ma
|
|
from numpy.ma import masked, nomask
|
|
import math
|
|
|
|
import itertools
|
|
import warnings
|
|
from collections import namedtuple
|
|
|
|
from . import distributions
|
|
from scipy._lib._util import _rename_parameter, _contains_nan
|
|
from scipy._lib._bunch import _make_tuple_bunch
|
|
import scipy.special as special
|
|
import scipy.stats._stats_py
|
|
import scipy.stats._stats_py as _stats_py
|
|
|
|
from ._stats_mstats_common import (
|
|
_find_repeats,
|
|
theilslopes as stats_theilslopes,
|
|
siegelslopes as stats_siegelslopes
|
|
)
|
|
|
|
|
|
def _chk_asarray(a, axis):
|
|
# Always returns a masked array, raveled for axis=None
|
|
a = ma.asanyarray(a)
|
|
if axis is None:
|
|
a = ma.ravel(a)
|
|
outaxis = 0
|
|
else:
|
|
outaxis = axis
|
|
return a, outaxis
|
|
|
|
|
|
def _chk2_asarray(a, b, axis):
|
|
a = ma.asanyarray(a)
|
|
b = ma.asanyarray(b)
|
|
if axis is None:
|
|
a = ma.ravel(a)
|
|
b = ma.ravel(b)
|
|
outaxis = 0
|
|
else:
|
|
outaxis = axis
|
|
return a, b, outaxis
|
|
|
|
|
|
def _chk_size(a, b):
|
|
a = ma.asanyarray(a)
|
|
b = ma.asanyarray(b)
|
|
(na, nb) = (a.size, b.size)
|
|
if na != nb:
|
|
raise ValueError("The size of the input array should match!"
|
|
f" ({na} <> {nb})")
|
|
return (a, b, na)
|
|
|
|
|
|
def _ttest_finish(df, t, alternative):
|
|
"""Common code between all 3 t-test functions."""
|
|
# We use ``stdtr`` directly here to preserve masked arrays
|
|
|
|
if alternative == 'less':
|
|
pval = special.stdtr(df, t)
|
|
elif alternative == 'greater':
|
|
pval = special.stdtr(df, -t)
|
|
elif alternative == 'two-sided':
|
|
pval = special.stdtr(df, -np.abs(t))*2
|
|
else:
|
|
raise ValueError("alternative must be "
|
|
"'less', 'greater' or 'two-sided'")
|
|
|
|
if t.ndim == 0:
|
|
t = t[()]
|
|
if pval.ndim == 0:
|
|
pval = pval[()]
|
|
|
|
return t, pval
|
|
|
|
|
|
def argstoarray(*args):
|
|
"""
|
|
Constructs a 2D array from a group of sequences.
|
|
|
|
Sequences are filled with missing values to match the length of the longest
|
|
sequence.
|
|
|
|
Parameters
|
|
----------
|
|
*args : sequences
|
|
Group of sequences.
|
|
|
|
Returns
|
|
-------
|
|
argstoarray : MaskedArray
|
|
A ( `m` x `n` ) masked array, where `m` is the number of arguments and
|
|
`n` the length of the longest argument.
|
|
|
|
Notes
|
|
-----
|
|
`numpy.ma.vstack` has identical behavior, but is called with a sequence
|
|
of sequences.
|
|
|
|
Examples
|
|
--------
|
|
A 2D masked array constructed from a group of sequences is returned.
|
|
|
|
>>> from scipy.stats.mstats import argstoarray
|
|
>>> argstoarray([1, 2, 3], [4, 5, 6])
|
|
masked_array(
|
|
data=[[1.0, 2.0, 3.0],
|
|
[4.0, 5.0, 6.0]],
|
|
mask=[[False, False, False],
|
|
[False, False, False]],
|
|
fill_value=1e+20)
|
|
|
|
The returned masked array filled with missing values when the lengths of
|
|
sequences are different.
|
|
|
|
>>> argstoarray([1, 3], [4, 5, 6])
|
|
masked_array(
|
|
data=[[1.0, 3.0, --],
|
|
[4.0, 5.0, 6.0]],
|
|
mask=[[False, False, True],
|
|
[False, False, False]],
|
|
fill_value=1e+20)
|
|
|
|
"""
|
|
if len(args) == 1 and not isinstance(args[0], ndarray):
|
|
output = ma.asarray(args[0])
|
|
if output.ndim != 2:
|
|
raise ValueError("The input should be 2D")
|
|
else:
|
|
n = len(args)
|
|
m = max([len(k) for k in args])
|
|
output = ma.array(np.empty((n,m), dtype=float), mask=True)
|
|
for (k,v) in enumerate(args):
|
|
output[k,:len(v)] = v
|
|
|
|
output[np.logical_not(np.isfinite(output._data))] = masked
|
|
return output
|
|
|
|
|
|
def find_repeats(arr):
|
|
"""Find repeats in arr and return a tuple (repeats, repeat_count).
|
|
|
|
The input is cast to float64. Masked values are discarded.
|
|
|
|
Parameters
|
|
----------
|
|
arr : sequence
|
|
Input array. The array is flattened if it is not 1D.
|
|
|
|
Returns
|
|
-------
|
|
repeats : ndarray
|
|
Array of repeated values.
|
|
counts : ndarray
|
|
Array of counts.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats import mstats
|
|
>>> mstats.find_repeats([2, 1, 2, 3, 2, 2, 5])
|
|
(array([2.]), array([4]))
|
|
|
|
In the above example, 2 repeats 4 times.
|
|
|
|
>>> mstats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
|
|
(array([4., 5.]), array([2, 2]))
|
|
|
|
In the above example, both 4 and 5 repeat 2 times.
|
|
|
|
"""
|
|
# Make sure we get a copy. ma.compressed promises a "new array", but can
|
|
# actually return a reference.
|
|
compr = np.asarray(ma.compressed(arr), dtype=np.float64)
|
|
try:
|
|
need_copy = np.may_share_memory(compr, arr)
|
|
except AttributeError:
|
|
# numpy < 1.8.2 bug: np.may_share_memory([], []) raises,
|
|
# while in numpy 1.8.2 and above it just (correctly) returns False.
|
|
need_copy = False
|
|
if need_copy:
|
|
compr = compr.copy()
|
|
return _find_repeats(compr)
|
|
|
|
|
|
def count_tied_groups(x, use_missing=False):
|
|
"""
|
|
Counts the number of tied values.
|
|
|
|
Parameters
|
|
----------
|
|
x : sequence
|
|
Sequence of data on which to counts the ties
|
|
use_missing : bool, optional
|
|
Whether to consider missing values as tied.
|
|
|
|
Returns
|
|
-------
|
|
count_tied_groups : dict
|
|
Returns a dictionary (nb of ties: nb of groups).
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats import mstats
|
|
>>> import numpy as np
|
|
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
|
|
>>> mstats.count_tied_groups(z)
|
|
{2: 1, 3: 2}
|
|
|
|
In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).
|
|
|
|
>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
|
|
>>> mstats.count_tied_groups(z)
|
|
{2: 2, 3: 1}
|
|
>>> z[[1,-1]] = np.ma.masked
|
|
>>> mstats.count_tied_groups(z, use_missing=True)
|
|
{2: 2, 3: 1}
|
|
|
|
"""
|
|
nmasked = ma.getmask(x).sum()
|
|
# We need the copy as find_repeats will overwrite the initial data
|
|
data = ma.compressed(x).copy()
|
|
(ties, counts) = find_repeats(data)
|
|
nties = {}
|
|
if len(ties):
|
|
nties = dict(zip(np.unique(counts), itertools.repeat(1)))
|
|
nties.update(dict(zip(*find_repeats(counts))))
|
|
|
|
if nmasked and use_missing:
|
|
try:
|
|
nties[nmasked] += 1
|
|
except KeyError:
|
|
nties[nmasked] = 1
|
|
|
|
return nties
|
|
|
|
|
|
def rankdata(data, axis=None, use_missing=False):
|
|
"""Returns the rank (also known as order statistics) of each data point
|
|
along the given axis.
|
|
|
|
If some values are tied, their rank is averaged.
|
|
If some values are masked, their rank is set to 0 if use_missing is False,
|
|
or set to the average rank of the unmasked values if use_missing is True.
|
|
|
|
Parameters
|
|
----------
|
|
data : sequence
|
|
Input data. The data is transformed to a masked array
|
|
axis : {None,int}, optional
|
|
Axis along which to perform the ranking.
|
|
If None, the array is first flattened. An exception is raised if
|
|
the axis is specified for arrays with a dimension larger than 2
|
|
use_missing : bool, optional
|
|
Whether the masked values have a rank of 0 (False) or equal to the
|
|
average rank of the unmasked values (True).
|
|
|
|
"""
|
|
def _rank1d(data, use_missing=False):
|
|
n = data.count()
|
|
rk = np.empty(data.size, dtype=float)
|
|
idx = data.argsort()
|
|
rk[idx[:n]] = np.arange(1,n+1)
|
|
|
|
if use_missing:
|
|
rk[idx[n:]] = (n+1)/2.
|
|
else:
|
|
rk[idx[n:]] = 0
|
|
|
|
repeats = find_repeats(data.copy())
|
|
for r in repeats[0]:
|
|
condition = (data == r).filled(False)
|
|
rk[condition] = rk[condition].mean()
|
|
return rk
|
|
|
|
data = ma.array(data, copy=False)
|
|
if axis is None:
|
|
if data.ndim > 1:
|
|
return _rank1d(data.ravel(), use_missing).reshape(data.shape)
|
|
else:
|
|
return _rank1d(data, use_missing)
|
|
else:
|
|
return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)
|
|
|
|
|
|
ModeResult = namedtuple('ModeResult', ('mode', 'count'))
|
|
|
|
|
|
def mode(a, axis=0):
|
|
"""
|
|
Returns an array of the modal (most common) value in the passed array.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
n-dimensional array of which to find mode(s).
|
|
axis : int or None, optional
|
|
Axis along which to operate. Default is 0. If None, compute over
|
|
the whole array `a`.
|
|
|
|
Returns
|
|
-------
|
|
mode : ndarray
|
|
Array of modal values.
|
|
count : ndarray
|
|
Array of counts for each mode.
|
|
|
|
Notes
|
|
-----
|
|
For more details, see `scipy.stats.mode`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy import stats
|
|
>>> from scipy.stats import mstats
|
|
>>> m_arr = np.ma.array([1, 1, 0, 0, 0, 0], mask=[0, 0, 1, 1, 1, 0])
|
|
>>> mstats.mode(m_arr) # note that most zeros are masked
|
|
ModeResult(mode=array([1.]), count=array([2.]))
|
|
|
|
"""
|
|
return _mode(a, axis=axis, keepdims=True)
|
|
|
|
|
|
def _mode(a, axis=0, keepdims=True):
|
|
# Don't want to expose `keepdims` from the public `mstats.mode`
|
|
a, axis = _chk_asarray(a, axis)
|
|
|
|
def _mode1D(a):
|
|
(rep,cnt) = find_repeats(a)
|
|
if not cnt.ndim:
|
|
return (0, 0)
|
|
elif cnt.size:
|
|
return (rep[cnt.argmax()], cnt.max())
|
|
else:
|
|
return (a.min(), 1)
|
|
|
|
if axis is None:
|
|
output = _mode1D(ma.ravel(a))
|
|
output = (ma.array(output[0]), ma.array(output[1]))
|
|
else:
|
|
output = ma.apply_along_axis(_mode1D, axis, a)
|
|
if keepdims is None or keepdims:
|
|
newshape = list(a.shape)
|
|
newshape[axis] = 1
|
|
slices = [slice(None)] * output.ndim
|
|
slices[axis] = 0
|
|
modes = output[tuple(slices)].reshape(newshape)
|
|
slices[axis] = 1
|
|
counts = output[tuple(slices)].reshape(newshape)
|
|
output = (modes, counts)
|
|
else:
|
|
output = np.moveaxis(output, axis, 0)
|
|
|
|
return ModeResult(*output)
|
|
|
|
|
|
def _betai(a, b, x):
|
|
x = np.asanyarray(x)
|
|
x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0
|
|
return special.betainc(a, b, x)
|
|
|
|
|
|
def msign(x):
|
|
"""Returns the sign of x, or 0 if x is masked."""
|
|
return ma.filled(np.sign(x), 0)
|
|
|
|
|
|
def pearsonr(x, y):
|
|
r"""
|
|
Pearson correlation coefficient and p-value for testing non-correlation.
|
|
|
|
The Pearson correlation coefficient [1]_ measures the linear relationship
|
|
between two datasets. The calculation of the p-value relies on the
|
|
assumption that each dataset is normally distributed. (See Kowalski [3]_
|
|
for a discussion of the effects of non-normality of the input on the
|
|
distribution of the correlation coefficient.) Like other correlation
|
|
coefficients, this one varies between -1 and +1 with 0 implying no
|
|
correlation. Correlations of -1 or +1 imply an exact linear relationship.
|
|
|
|
Parameters
|
|
----------
|
|
x : (N,) array_like
|
|
Input array.
|
|
y : (N,) array_like
|
|
Input array.
|
|
|
|
Returns
|
|
-------
|
|
r : float
|
|
Pearson's correlation coefficient.
|
|
p-value : float
|
|
Two-tailed p-value.
|
|
|
|
Warns
|
|
-----
|
|
`~scipy.stats.ConstantInputWarning`
|
|
Raised if an input is a constant array. The correlation coefficient
|
|
is not defined in this case, so ``np.nan`` is returned.
|
|
|
|
`~scipy.stats.NearConstantInputWarning`
|
|
Raised if an input is "nearly" constant. The array ``x`` is considered
|
|
nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
|
|
Numerical errors in the calculation ``x - mean(x)`` in this case might
|
|
result in an inaccurate calculation of r.
|
|
|
|
See Also
|
|
--------
|
|
spearmanr : Spearman rank-order correlation coefficient.
|
|
kendalltau : Kendall's tau, a correlation measure for ordinal data.
|
|
|
|
Notes
|
|
-----
|
|
The correlation coefficient is calculated as follows:
|
|
|
|
.. math::
|
|
|
|
r = \frac{\sum (x - m_x) (y - m_y)}
|
|
{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
|
|
|
|
where :math:`m_x` is the mean of the vector x and :math:`m_y` is
|
|
the mean of the vector y.
|
|
|
|
Under the assumption that x and y are drawn from
|
|
independent normal distributions (so the population correlation coefficient
|
|
is 0), the probability density function of the sample correlation
|
|
coefficient r is ([1]_, [2]_):
|
|
|
|
.. math::
|
|
|
|
f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)}
|
|
|
|
where n is the number of samples, and B is the beta function. This
|
|
is sometimes referred to as the exact distribution of r. This is
|
|
the distribution that is used in `pearsonr` to compute the p-value.
|
|
The distribution is a beta distribution on the interval [-1, 1],
|
|
with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
|
|
implementation of the beta distribution, the distribution of r is::
|
|
|
|
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
|
|
|
|
The p-value returned by `pearsonr` is a two-sided p-value. The p-value
|
|
roughly indicates the probability of an uncorrelated system
|
|
producing datasets that have a Pearson correlation at least as extreme
|
|
as the one computed from these datasets. More precisely, for a
|
|
given sample with correlation coefficient r, the p-value is
|
|
the probability that abs(r') of a random sample x' and y' drawn from
|
|
the population with zero correlation would be greater than or equal
|
|
to abs(r). In terms of the object ``dist`` shown above, the p-value
|
|
for a given r and length n can be computed as::
|
|
|
|
p = 2*dist.cdf(-abs(r))
|
|
|
|
When n is 2, the above continuous distribution is not well-defined.
|
|
One can interpret the limit of the beta distribution as the shape
|
|
parameters a and b approach a = b = 0 as a discrete distribution with
|
|
equal probability masses at r = 1 and r = -1. More directly, one
|
|
can observe that, given the data x = [x1, x2] and y = [y1, y2], and
|
|
assuming x1 != x2 and y1 != y2, the only possible values for r are 1
|
|
and -1. Because abs(r') for any sample x' and y' with length 2 will
|
|
be 1, the two-sided p-value for a sample of length 2 is always 1.
|
|
|
|
References
|
|
----------
|
|
.. [1] "Pearson correlation coefficient", Wikipedia,
|
|
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
|
|
.. [2] Student, "Probable error of a correlation coefficient",
|
|
Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
|
|
.. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
|
|
of the Sample Product-Moment Correlation Coefficient"
|
|
Journal of the Royal Statistical Society. Series C (Applied
|
|
Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy import stats
|
|
>>> from scipy.stats import mstats
|
|
>>> mstats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
|
|
(-0.7426106572325057, 0.1505558088534455)
|
|
|
|
There is a linear dependence between x and y if y = a + b*x + e, where
|
|
a,b are constants and e is a random error term, assumed to be independent
|
|
of x. For simplicity, assume that x is standard normal, a=0, b=1 and let
|
|
e follow a normal distribution with mean zero and standard deviation s>0.
|
|
|
|
>>> s = 0.5
|
|
>>> x = stats.norm.rvs(size=500)
|
|
>>> e = stats.norm.rvs(scale=s, size=500)
|
|
>>> y = x + e
|
|
>>> mstats.pearsonr(x, y)
|
|
(0.9029601878969703, 8.428978827629898e-185) # may vary
|
|
|
|
This should be close to the exact value given by
|
|
|
|
>>> 1/np.sqrt(1 + s**2)
|
|
0.8944271909999159
|
|
|
|
For s=0.5, we observe a high level of correlation. In general, a large
|
|
variance of the noise reduces the correlation, while the correlation
|
|
approaches one as the variance of the error goes to zero.
|
|
|
|
It is important to keep in mind that no correlation does not imply
|
|
independence unless (x, y) is jointly normal. Correlation can even be zero
|
|
when there is a very simple dependence structure: if X follows a
|
|
standard normal distribution, let y = abs(x). Note that the correlation
|
|
between x and y is zero. Indeed, since the expectation of x is zero,
|
|
cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero
|
|
by symmetry. The following lines of code illustrate this observation:
|
|
|
|
>>> y = np.abs(x)
|
|
>>> mstats.pearsonr(x, y)
|
|
(-0.016172891856853524, 0.7182823678751942) # may vary
|
|
|
|
A non-zero correlation coefficient can be misleading. For example, if X has
|
|
a standard normal distribution, define y = x if x < 0 and y = 0 otherwise.
|
|
A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797...,
|
|
implying a high level of correlation:
|
|
|
|
>>> y = np.where(x < 0, x, 0)
|
|
>>> mstats.pearsonr(x, y)
|
|
(0.8537091583771509, 3.183461621422181e-143) # may vary
|
|
|
|
This is unintuitive since there is no dependence of x and y if x is larger
|
|
than zero which happens in about half of the cases if we sample x and y.
|
|
"""
|
|
(x, y, n) = _chk_size(x, y)
|
|
(x, y) = (x.ravel(), y.ravel())
|
|
# Get the common mask and the total nb of unmasked elements
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
|
|
n -= m.sum()
|
|
df = n-2
|
|
if df < 0:
|
|
return (masked, masked)
|
|
|
|
return scipy.stats._stats_py.pearsonr(
|
|
ma.masked_array(x, mask=m).compressed(),
|
|
ma.masked_array(y, mask=m).compressed())
|
|
|
|
|
|
def spearmanr(x, y=None, use_ties=True, axis=None, nan_policy='propagate',
|
|
alternative='two-sided'):
|
|
"""
|
|
Calculates a Spearman rank-order correlation coefficient and the p-value
|
|
to test for non-correlation.
|
|
|
|
The Spearman correlation is a nonparametric measure of the linear
|
|
relationship between two datasets. Unlike the Pearson correlation, the
|
|
Spearman correlation does not assume that both datasets are normally
|
|
distributed. Like other correlation coefficients, this one varies
|
|
between -1 and +1 with 0 implying no correlation. Correlations of -1 or
|
|
+1 imply a monotonic relationship. Positive correlations imply that
|
|
as `x` increases, so does `y`. Negative correlations imply that as `x`
|
|
increases, `y` decreases.
|
|
|
|
Missing values are discarded pair-wise: if a value is missing in `x`, the
|
|
corresponding value in `y` is masked.
|
|
|
|
The p-value roughly indicates the probability of an uncorrelated system
|
|
producing datasets that have a Spearman correlation at least as extreme
|
|
as the one computed from these datasets. The p-values are not entirely
|
|
reliable but are probably reasonable for datasets larger than 500 or so.
|
|
|
|
Parameters
|
|
----------
|
|
x, y : 1D or 2D array_like, y is optional
|
|
One or two 1-D or 2-D arrays containing multiple variables and
|
|
observations. When these are 1-D, each represents a vector of
|
|
observations of a single variable. For the behavior in the 2-D case,
|
|
see under ``axis``, below.
|
|
use_ties : bool, optional
|
|
DO NOT USE. Does not do anything, keyword is only left in place for
|
|
backwards compatibility reasons.
|
|
axis : int or None, optional
|
|
If axis=0 (default), then each column represents a variable, with
|
|
observations in the rows. If axis=1, the relationship is transposed:
|
|
each row represents a variable, while the columns contain observations.
|
|
If axis=None, then both arrays will be raveled.
|
|
nan_policy : {'propagate', 'raise', 'omit'}, optional
|
|
Defines how to handle when input contains nan. 'propagate' returns nan,
|
|
'raise' throws an error, 'omit' performs the calculations ignoring nan
|
|
values. Default is 'propagate'.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
|
The following options are available:
|
|
|
|
* 'two-sided': the correlation is nonzero
|
|
* 'less': the correlation is negative (less than zero)
|
|
* 'greater': the correlation is positive (greater than zero)
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
res : SignificanceResult
|
|
An object containing attributes:
|
|
|
|
statistic : float or ndarray (2-D square)
|
|
Spearman correlation matrix or correlation coefficient (if only 2
|
|
variables are given as parameters). Correlation matrix is square
|
|
with length equal to total number of variables (columns or rows) in
|
|
``a`` and ``b`` combined.
|
|
pvalue : float
|
|
The p-value for a hypothesis test whose null hypothesis
|
|
is that two sets of data are linearly uncorrelated. See
|
|
`alternative` above for alternative hypotheses. `pvalue` has the
|
|
same shape as `statistic`.
|
|
|
|
References
|
|
----------
|
|
[CRCProbStat2000] section 14.7
|
|
|
|
"""
|
|
if not use_ties:
|
|
raise ValueError("`use_ties=False` is not supported in SciPy >= 1.2.0")
|
|
|
|
# Always returns a masked array, raveled if axis=None
|
|
x, axisout = _chk_asarray(x, axis)
|
|
if y is not None:
|
|
# Deal only with 2-D `x` case.
|
|
y, _ = _chk_asarray(y, axis)
|
|
if axisout == 0:
|
|
x = ma.column_stack((x, y))
|
|
else:
|
|
x = ma.vstack((x, y))
|
|
|
|
if axisout == 1:
|
|
# To simplify the code that follow (always use `n_obs, n_vars` shape)
|
|
x = x.T
|
|
|
|
if nan_policy == 'omit':
|
|
x = ma.masked_invalid(x)
|
|
|
|
def _spearmanr_2cols(x):
|
|
# Mask the same observations for all variables, and then drop those
|
|
# observations (can't leave them masked, rankdata is weird).
|
|
x = ma.mask_rowcols(x, axis=0)
|
|
x = x[~x.mask.any(axis=1), :]
|
|
|
|
# If either column is entirely NaN or Inf
|
|
if not np.any(x.data):
|
|
res = scipy.stats._stats_py.SignificanceResult(np.nan, np.nan)
|
|
res.correlation = np.nan
|
|
return res
|
|
|
|
m = ma.getmask(x)
|
|
n_obs = x.shape[0]
|
|
dof = n_obs - 2 - int(m.sum(axis=0)[0])
|
|
if dof < 0:
|
|
raise ValueError("The input must have at least 3 entries!")
|
|
|
|
# Gets the ranks and rank differences
|
|
x_ranked = rankdata(x, axis=0)
|
|
rs = ma.corrcoef(x_ranked, rowvar=False).data
|
|
|
|
# rs can have elements equal to 1, so avoid zero division warnings
|
|
with np.errstate(divide='ignore'):
|
|
# clip the small negative values possibly caused by rounding
|
|
# errors before taking the square root
|
|
t = rs * np.sqrt((dof / ((rs+1.0) * (1.0-rs))).clip(0))
|
|
|
|
t, prob = _ttest_finish(dof, t, alternative)
|
|
|
|
# For backwards compatibility, return scalars when comparing 2 columns
|
|
if rs.shape == (2, 2):
|
|
res = scipy.stats._stats_py.SignificanceResult(rs[1, 0],
|
|
prob[1, 0])
|
|
res.correlation = rs[1, 0]
|
|
return res
|
|
else:
|
|
res = scipy.stats._stats_py.SignificanceResult(rs, prob)
|
|
res.correlation = rs
|
|
return res
|
|
|
|
# Need to do this per pair of variables, otherwise the dropped observations
|
|
# in a third column mess up the result for a pair.
|
|
n_vars = x.shape[1]
|
|
if n_vars == 2:
|
|
return _spearmanr_2cols(x)
|
|
else:
|
|
rs = np.ones((n_vars, n_vars), dtype=float)
|
|
prob = np.zeros((n_vars, n_vars), dtype=float)
|
|
for var1 in range(n_vars - 1):
|
|
for var2 in range(var1+1, n_vars):
|
|
result = _spearmanr_2cols(x[:, [var1, var2]])
|
|
rs[var1, var2] = result.correlation
|
|
rs[var2, var1] = result.correlation
|
|
prob[var1, var2] = result.pvalue
|
|
prob[var2, var1] = result.pvalue
|
|
|
|
res = scipy.stats._stats_py.SignificanceResult(rs, prob)
|
|
res.correlation = rs
|
|
return res
|
|
|
|
|
|
def _kendall_p_exact(n, c, alternative='two-sided'):
|
|
|
|
# Use the fact that distribution is symmetric: always calculate a CDF in
|
|
# the left tail.
|
|
# This will be the one-sided p-value if `c` is on the side of
|
|
# the null distribution predicted by the alternative hypothesis.
|
|
# The two-sided p-value will be twice this value.
|
|
# If `c` is on the other side of the null distribution, we'll need to
|
|
# take the complement and add back the probability mass at `c`.
|
|
in_right_tail = (c >= (n*(n-1))//2 - c)
|
|
alternative_greater = (alternative == 'greater')
|
|
c = int(min(c, (n*(n-1))//2 - c))
|
|
|
|
# Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods"
|
|
# (4th Edition), Charles Griffin & Co., 1970.
|
|
if n <= 0:
|
|
raise ValueError(f'n ({n}) must be positive')
|
|
elif c < 0 or 4*c > n*(n-1):
|
|
raise ValueError(f'c ({c}) must satisfy 0 <= 4c <= n(n-1) = {n*(n-1)}.')
|
|
elif n == 1:
|
|
prob = 1.0
|
|
p_mass_at_c = 1
|
|
elif n == 2:
|
|
prob = 1.0
|
|
p_mass_at_c = 0.5
|
|
elif c == 0:
|
|
prob = 2.0/math.factorial(n) if n < 171 else 0.0
|
|
p_mass_at_c = prob/2
|
|
elif c == 1:
|
|
prob = 2.0/math.factorial(n-1) if n < 172 else 0.0
|
|
p_mass_at_c = (n-1)/math.factorial(n)
|
|
elif 4*c == n*(n-1) and alternative == 'two-sided':
|
|
# I'm sure there's a simple formula for p_mass_at_c in this
|
|
# case, but I don't know it. Use generic formula for one-sided p-value.
|
|
prob = 1.0
|
|
elif n < 171:
|
|
new = np.zeros(c+1)
|
|
new[0:2] = 1.0
|
|
for j in range(3,n+1):
|
|
new = np.cumsum(new)
|
|
if j <= c:
|
|
new[j:] -= new[:c+1-j]
|
|
prob = 2.0*np.sum(new)/math.factorial(n)
|
|
p_mass_at_c = new[-1]/math.factorial(n)
|
|
else:
|
|
new = np.zeros(c+1)
|
|
new[0:2] = 1.0
|
|
for j in range(3, n+1):
|
|
new = np.cumsum(new)/j
|
|
if j <= c:
|
|
new[j:] -= new[:c+1-j]
|
|
prob = np.sum(new)
|
|
p_mass_at_c = new[-1]/2
|
|
|
|
if alternative != 'two-sided':
|
|
# if the alternative hypothesis and alternative agree,
|
|
# one-sided p-value is half the two-sided p-value
|
|
if in_right_tail == alternative_greater:
|
|
prob /= 2
|
|
else:
|
|
prob = 1 - prob/2 + p_mass_at_c
|
|
|
|
prob = np.clip(prob, 0, 1)
|
|
|
|
return prob
|
|
|
|
|
|
def kendalltau(x, y, use_ties=True, use_missing=False, method='auto',
|
|
alternative='two-sided'):
|
|
"""
|
|
Computes Kendall's rank correlation tau on two variables *x* and *y*.
|
|
|
|
Parameters
|
|
----------
|
|
x : sequence
|
|
First data list (for example, time).
|
|
y : sequence
|
|
Second data list.
|
|
use_ties : {True, False}, optional
|
|
Whether ties correction should be performed.
|
|
use_missing : {False, True}, optional
|
|
Whether missing data should be allocated a rank of 0 (False) or the
|
|
average rank (True)
|
|
method : {'auto', 'asymptotic', 'exact'}, optional
|
|
Defines which method is used to calculate the p-value [1]_.
|
|
'asymptotic' uses a normal approximation valid for large samples.
|
|
'exact' computes the exact p-value, but can only be used if no ties
|
|
are present. As the sample size increases, the 'exact' computation
|
|
time may grow and the result may lose some precision.
|
|
'auto' is the default and selects the appropriate
|
|
method based on a trade-off between speed and accuracy.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
|
The following options are available:
|
|
|
|
* 'two-sided': the rank correlation is nonzero
|
|
* 'less': the rank correlation is negative (less than zero)
|
|
* 'greater': the rank correlation is positive (greater than zero)
|
|
|
|
Returns
|
|
-------
|
|
res : SignificanceResult
|
|
An object containing attributes:
|
|
|
|
statistic : float
|
|
The tau statistic.
|
|
pvalue : float
|
|
The p-value for a hypothesis test whose null hypothesis is
|
|
an absence of association, tau = 0.
|
|
|
|
References
|
|
----------
|
|
.. [1] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
|
|
Charles Griffin & Co., 1970.
|
|
|
|
"""
|
|
(x, y, n) = _chk_size(x, y)
|
|
(x, y) = (x.flatten(), y.flatten())
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
|
|
if m is not nomask:
|
|
x = ma.array(x, mask=m, copy=True)
|
|
y = ma.array(y, mask=m, copy=True)
|
|
# need int() here, otherwise numpy defaults to 32 bit
|
|
# integer on all Windows architectures, causing overflow.
|
|
# int() will keep it infinite precision.
|
|
n -= int(m.sum())
|
|
|
|
if n < 2:
|
|
res = scipy.stats._stats_py.SignificanceResult(np.nan, np.nan)
|
|
res.correlation = np.nan
|
|
return res
|
|
|
|
rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
|
|
ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
|
|
idx = rx.argsort()
|
|
(rx, ry) = (rx[idx], ry[idx])
|
|
C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum()
|
|
for i in range(len(ry)-1)], dtype=float)
|
|
D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum()
|
|
for i in range(len(ry)-1)], dtype=float)
|
|
xties = count_tied_groups(x)
|
|
yties = count_tied_groups(y)
|
|
if use_ties:
|
|
corr_x = np.sum([v*k*(k-1) for (k,v) in xties.items()], dtype=float)
|
|
corr_y = np.sum([v*k*(k-1) for (k,v) in yties.items()], dtype=float)
|
|
denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
|
|
else:
|
|
denom = n*(n-1)/2.
|
|
tau = (C-D) / denom
|
|
|
|
if method == 'exact' and (xties or yties):
|
|
raise ValueError("Ties found, exact method cannot be used.")
|
|
|
|
if method == 'auto':
|
|
if (not xties and not yties) and (n <= 33 or min(C, n*(n-1)/2.0-C) <= 1):
|
|
method = 'exact'
|
|
else:
|
|
method = 'asymptotic'
|
|
|
|
if not xties and not yties and method == 'exact':
|
|
prob = _kendall_p_exact(n, C, alternative)
|
|
|
|
elif method == 'asymptotic':
|
|
var_s = n*(n-1)*(2*n+5)
|
|
if use_ties:
|
|
var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in xties.items()])
|
|
var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in yties.items()])
|
|
v1 = (np.sum([v*k*(k-1) for (k, v) in xties.items()], dtype=float) *
|
|
np.sum([v*k*(k-1) for (k, v) in yties.items()], dtype=float))
|
|
v1 /= 2.*n*(n-1)
|
|
if n > 2:
|
|
v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in xties.items()],
|
|
dtype=float) * \
|
|
np.sum([v*k*(k-1)*(k-2) for (k,v) in yties.items()],
|
|
dtype=float)
|
|
v2 /= 9.*n*(n-1)*(n-2)
|
|
else:
|
|
v2 = 0
|
|
else:
|
|
v1 = v2 = 0
|
|
|
|
var_s /= 18.
|
|
var_s += (v1 + v2)
|
|
z = (C-D)/np.sqrt(var_s)
|
|
prob = scipy.stats._stats_py._get_pvalue(z, distributions.norm, alternative)
|
|
else:
|
|
raise ValueError("Unknown method "+str(method)+" specified, please "
|
|
"use auto, exact or asymptotic.")
|
|
|
|
res = scipy.stats._stats_py.SignificanceResult(tau[()], prob[()])
|
|
res.correlation = tau
|
|
return res
|
|
|
|
|
|
def kendalltau_seasonal(x):
|
|
"""
|
|
Computes a multivariate Kendall's rank correlation tau, for seasonal data.
|
|
|
|
Parameters
|
|
----------
|
|
x : 2-D ndarray
|
|
Array of seasonal data, with seasons in columns.
|
|
|
|
"""
|
|
x = ma.array(x, subok=True, copy=False, ndmin=2)
|
|
(n,m) = x.shape
|
|
n_p = x.count(0)
|
|
|
|
S_szn = sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
|
|
S_tot = S_szn.sum()
|
|
|
|
n_tot = x.count()
|
|
ties = count_tied_groups(x.compressed())
|
|
corr_ties = sum(v*k*(k-1) for (k,v) in ties.items())
|
|
denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.
|
|
|
|
R = rankdata(x, axis=0, use_missing=True)
|
|
K = ma.empty((m,m), dtype=int)
|
|
covmat = ma.empty((m,m), dtype=float)
|
|
denom_szn = ma.empty(m, dtype=float)
|
|
for j in range(m):
|
|
ties_j = count_tied_groups(x[:,j].compressed())
|
|
corr_j = sum(v*k*(k-1) for (k,v) in ties_j.items())
|
|
cmb = n_p[j]*(n_p[j]-1)
|
|
for k in range(j,m,1):
|
|
K[j,k] = sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
|
|
for i in range(n))
|
|
covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() -
|
|
n*(n_p[j]+1)*(n_p[k]+1))/3.
|
|
K[k,j] = K[j,k]
|
|
covmat[k,j] = covmat[j,k]
|
|
|
|
denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.
|
|
|
|
var_szn = covmat.diagonal()
|
|
|
|
z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
|
|
z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
|
|
z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())
|
|
|
|
prob_szn = special.erfc(abs(z_szn.data)/np.sqrt(2))
|
|
prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
|
|
prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))
|
|
|
|
chi2_tot = (z_szn*z_szn).sum()
|
|
chi2_trd = m * z_szn.mean()**2
|
|
output = {'seasonal tau': S_szn/denom_szn,
|
|
'global tau': S_tot/denom_tot,
|
|
'global tau (alt)': S_tot/denom_szn.sum(),
|
|
'seasonal p-value': prob_szn,
|
|
'global p-value (indep)': prob_tot_ind,
|
|
'global p-value (dep)': prob_tot_dep,
|
|
'chi2 total': chi2_tot,
|
|
'chi2 trend': chi2_trd,
|
|
}
|
|
return output
|
|
|
|
|
|
PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation',
|
|
'pvalue'))
|
|
|
|
|
|
def pointbiserialr(x, y):
|
|
"""Calculates a point biserial correlation coefficient and its p-value.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like of bools
|
|
Input array.
|
|
y : array_like
|
|
Input array.
|
|
|
|
Returns
|
|
-------
|
|
correlation : float
|
|
R value
|
|
pvalue : float
|
|
2-tailed p-value
|
|
|
|
Notes
|
|
-----
|
|
Missing values are considered pair-wise: if a value is missing in x,
|
|
the corresponding value in y is masked.
|
|
|
|
For more details on `pointbiserialr`, see `scipy.stats.pointbiserialr`.
|
|
|
|
"""
|
|
x = ma.fix_invalid(x, copy=True).astype(bool)
|
|
y = ma.fix_invalid(y, copy=True).astype(float)
|
|
# Get rid of the missing data
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
|
|
if m is not nomask:
|
|
unmask = np.logical_not(m)
|
|
x = x[unmask]
|
|
y = y[unmask]
|
|
|
|
n = len(x)
|
|
# phat is the fraction of x values that are True
|
|
phat = x.sum() / float(n)
|
|
y0 = y[~x] # y-values where x is False
|
|
y1 = y[x] # y-values where x is True
|
|
y0m = y0.mean()
|
|
y1m = y1.mean()
|
|
|
|
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
|
|
|
|
df = n-2
|
|
t = rpb*ma.sqrt(df/(1.0-rpb**2))
|
|
prob = _betai(0.5*df, 0.5, df/(df+t*t))
|
|
|
|
return PointbiserialrResult(rpb, prob)
|
|
|
|
|
|
def linregress(x, y=None):
|
|
r"""
|
|
Calculate a linear least-squares regression for two sets of measurements.
|
|
|
|
Parameters
|
|
----------
|
|
x, y : array_like
|
|
Two sets of measurements. Both arrays should have the same length N. If
|
|
only `x` is given (and ``y=None``), then it must be a two-dimensional
|
|
array where one dimension has length 2. The two sets of measurements
|
|
are then found by splitting the array along the length-2 dimension. In
|
|
the case where ``y=None`` and `x` is a 2xN array, ``linregress(x)`` is
|
|
equivalent to ``linregress(x[0], x[1])``.
|
|
|
|
Returns
|
|
-------
|
|
result : ``LinregressResult`` instance
|
|
The return value is an object with the following attributes:
|
|
|
|
slope : float
|
|
Slope of the regression line.
|
|
intercept : float
|
|
Intercept of the regression line.
|
|
rvalue : float
|
|
The Pearson correlation coefficient. The square of ``rvalue``
|
|
is equal to the coefficient of determination.
|
|
pvalue : float
|
|
The p-value for a hypothesis test whose null hypothesis is
|
|
that the slope is zero, using Wald Test with t-distribution of
|
|
the test statistic. See `alternative` above for alternative
|
|
hypotheses.
|
|
stderr : float
|
|
Standard error of the estimated slope (gradient), under the
|
|
assumption of residual normality.
|
|
intercept_stderr : float
|
|
Standard error of the estimated intercept, under the assumption
|
|
of residual normality.
|
|
|
|
See Also
|
|
--------
|
|
scipy.optimize.curve_fit :
|
|
Use non-linear least squares to fit a function to data.
|
|
scipy.optimize.leastsq :
|
|
Minimize the sum of squares of a set of equations.
|
|
|
|
Notes
|
|
-----
|
|
Missing values are considered pair-wise: if a value is missing in `x`,
|
|
the corresponding value in `y` is masked.
|
|
|
|
For compatibility with older versions of SciPy, the return value acts
|
|
like a ``namedtuple`` of length 5, with fields ``slope``, ``intercept``,
|
|
``rvalue``, ``pvalue`` and ``stderr``, so one can continue to write::
|
|
|
|
slope, intercept, r, p, se = linregress(x, y)
|
|
|
|
With that style, however, the standard error of the intercept is not
|
|
available. To have access to all the computed values, including the
|
|
standard error of the intercept, use the return value as an object
|
|
with attributes, e.g.::
|
|
|
|
result = linregress(x, y)
|
|
print(result.intercept, result.intercept_stderr)
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> from scipy import stats
|
|
>>> rng = np.random.default_rng()
|
|
|
|
Generate some data:
|
|
|
|
>>> x = rng.random(10)
|
|
>>> y = 1.6*x + rng.random(10)
|
|
|
|
Perform the linear regression:
|
|
|
|
>>> res = stats.mstats.linregress(x, y)
|
|
|
|
Coefficient of determination (R-squared):
|
|
|
|
>>> print(f"R-squared: {res.rvalue**2:.6f}")
|
|
R-squared: 0.717533
|
|
|
|
Plot the data along with the fitted line:
|
|
|
|
>>> plt.plot(x, y, 'o', label='original data')
|
|
>>> plt.plot(x, res.intercept + res.slope*x, 'r', label='fitted line')
|
|
>>> plt.legend()
|
|
>>> plt.show()
|
|
|
|
Calculate 95% confidence interval on slope and intercept:
|
|
|
|
>>> # Two-sided inverse Students t-distribution
|
|
>>> # p - probability, df - degrees of freedom
|
|
>>> from scipy.stats import t
|
|
>>> tinv = lambda p, df: abs(t.ppf(p/2, df))
|
|
|
|
>>> ts = tinv(0.05, len(x)-2)
|
|
>>> print(f"slope (95%): {res.slope:.6f} +/- {ts*res.stderr:.6f}")
|
|
slope (95%): 1.453392 +/- 0.743465
|
|
>>> print(f"intercept (95%): {res.intercept:.6f}"
|
|
... f" +/- {ts*res.intercept_stderr:.6f}")
|
|
intercept (95%): 0.616950 +/- 0.544475
|
|
|
|
"""
|
|
if y is None:
|
|
x = ma.array(x)
|
|
if x.shape[0] == 2:
|
|
x, y = x
|
|
elif x.shape[1] == 2:
|
|
x, y = x.T
|
|
else:
|
|
raise ValueError("If only `x` is given as input, "
|
|
"it has to be of shape (2, N) or (N, 2), "
|
|
f"provided shape was {x.shape}")
|
|
else:
|
|
x = ma.array(x)
|
|
y = ma.array(y)
|
|
|
|
x = x.flatten()
|
|
y = y.flatten()
|
|
|
|
if np.amax(x) == np.amin(x) and len(x) > 1:
|
|
raise ValueError("Cannot calculate a linear regression "
|
|
"if all x values are identical")
|
|
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
|
|
if m is not nomask:
|
|
x = ma.array(x, mask=m)
|
|
y = ma.array(y, mask=m)
|
|
if np.any(~m):
|
|
result = _stats_py.linregress(x.data[~m], y.data[~m])
|
|
else:
|
|
# All data is masked
|
|
result = _stats_py.LinregressResult(slope=None, intercept=None,
|
|
rvalue=None, pvalue=None,
|
|
stderr=None,
|
|
intercept_stderr=None)
|
|
else:
|
|
result = _stats_py.linregress(x.data, y.data)
|
|
|
|
return result
|
|
|
|
|
|
def theilslopes(y, x=None, alpha=0.95, method='separate'):
|
|
r"""
|
|
Computes the Theil-Sen estimator for a set of points (x, y).
|
|
|
|
`theilslopes` implements a method for robust linear regression. It
|
|
computes the slope as the median of all slopes between paired values.
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
Dependent variable.
|
|
x : array_like or None, optional
|
|
Independent variable. If None, use ``arange(len(y))`` instead.
|
|
alpha : float, optional
|
|
Confidence degree between 0 and 1. Default is 95% confidence.
|
|
Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
|
|
interpreted as "find the 90% confidence interval".
|
|
method : {'joint', 'separate'}, optional
|
|
Method to be used for computing estimate for intercept.
|
|
Following methods are supported,
|
|
|
|
* 'joint': Uses np.median(y - slope * x) as intercept.
|
|
* 'separate': Uses np.median(y) - slope * np.median(x)
|
|
as intercept.
|
|
|
|
The default is 'separate'.
|
|
|
|
.. versionadded:: 1.8.0
|
|
|
|
Returns
|
|
-------
|
|
result : ``TheilslopesResult`` instance
|
|
The return value is an object with the following attributes:
|
|
|
|
slope : float
|
|
Theil slope.
|
|
intercept : float
|
|
Intercept of the Theil line.
|
|
low_slope : float
|
|
Lower bound of the confidence interval on `slope`.
|
|
high_slope : float
|
|
Upper bound of the confidence interval on `slope`.
|
|
|
|
See Also
|
|
--------
|
|
siegelslopes : a similar technique using repeated medians
|
|
|
|
|
|
Notes
|
|
-----
|
|
For more details on `theilslopes`, see `scipy.stats.theilslopes`.
|
|
|
|
"""
|
|
y = ma.asarray(y).flatten()
|
|
if x is None:
|
|
x = ma.arange(len(y), dtype=float)
|
|
else:
|
|
x = ma.asarray(x).flatten()
|
|
if len(x) != len(y):
|
|
raise ValueError(f"Incompatible lengths ! ({len(y)}<>{len(x)})")
|
|
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
|
|
y._mask = x._mask = m
|
|
# Disregard any masked elements of x or y
|
|
y = y.compressed()
|
|
x = x.compressed().astype(float)
|
|
# We now have unmasked arrays so can use `scipy.stats.theilslopes`
|
|
return stats_theilslopes(y, x, alpha=alpha, method=method)
|
|
|
|
|
|
def siegelslopes(y, x=None, method="hierarchical"):
|
|
r"""
|
|
Computes the Siegel estimator for a set of points (x, y).
|
|
|
|
`siegelslopes` implements a method for robust linear regression
|
|
using repeated medians to fit a line to the points (x, y).
|
|
The method is robust to outliers with an asymptotic breakdown point
|
|
of 50%.
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
Dependent variable.
|
|
x : array_like or None, optional
|
|
Independent variable. If None, use ``arange(len(y))`` instead.
|
|
method : {'hierarchical', 'separate'}
|
|
If 'hierarchical', estimate the intercept using the estimated
|
|
slope ``slope`` (default option).
|
|
If 'separate', estimate the intercept independent of the estimated
|
|
slope. See Notes for details.
|
|
|
|
Returns
|
|
-------
|
|
result : ``SiegelslopesResult`` instance
|
|
The return value is an object with the following attributes:
|
|
|
|
slope : float
|
|
Estimate of the slope of the regression line.
|
|
intercept : float
|
|
Estimate of the intercept of the regression line.
|
|
|
|
See Also
|
|
--------
|
|
theilslopes : a similar technique without repeated medians
|
|
|
|
Notes
|
|
-----
|
|
For more details on `siegelslopes`, see `scipy.stats.siegelslopes`.
|
|
|
|
"""
|
|
y = ma.asarray(y).ravel()
|
|
if x is None:
|
|
x = ma.arange(len(y), dtype=float)
|
|
else:
|
|
x = ma.asarray(x).ravel()
|
|
if len(x) != len(y):
|
|
raise ValueError(f"Incompatible lengths ! ({len(y)}<>{len(x)})")
|
|
|
|
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
|
|
y._mask = x._mask = m
|
|
# Disregard any masked elements of x or y
|
|
y = y.compressed()
|
|
x = x.compressed().astype(float)
|
|
# We now have unmasked arrays so can use `scipy.stats.siegelslopes`
|
|
return stats_siegelslopes(y, x, method=method)
|
|
|
|
|
|
SenSeasonalSlopesResult = _make_tuple_bunch('SenSeasonalSlopesResult',
|
|
['intra_slope', 'inter_slope'])
|
|
|
|
|
|
def sen_seasonal_slopes(x):
|
|
r"""
|
|
Computes seasonal Theil-Sen and Kendall slope estimators.
|
|
|
|
The seasonal generalization of Sen's slope computes the slopes between all
|
|
pairs of values within a "season" (column) of a 2D array. It returns an
|
|
array containing the median of these "within-season" slopes for each
|
|
season (the Theil-Sen slope estimator of each season), and it returns the
|
|
median of the within-season slopes across all seasons (the seasonal Kendall
|
|
slope estimator).
|
|
|
|
Parameters
|
|
----------
|
|
x : 2D array_like
|
|
Each column of `x` contains measurements of the dependent variable
|
|
within a season. The independent variable (usually time) of each season
|
|
is assumed to be ``np.arange(x.shape[0])``.
|
|
|
|
Returns
|
|
-------
|
|
result : ``SenSeasonalSlopesResult`` instance
|
|
The return value is an object with the following attributes:
|
|
|
|
intra_slope : ndarray
|
|
For each season, the Theil-Sen slope estimator: the median of
|
|
within-season slopes.
|
|
inter_slope : float
|
|
The seasonal Kendall slope estimateor: the median of within-season
|
|
slopes *across all* seasons.
|
|
|
|
See Also
|
|
--------
|
|
theilslopes : the analogous function for non-seasonal data
|
|
scipy.stats.theilslopes : non-seasonal slopes for non-masked arrays
|
|
|
|
Notes
|
|
-----
|
|
The slopes :math:`d_{ijk}` within season :math:`i` are:
|
|
|
|
.. math::
|
|
|
|
d_{ijk} = \frac{x_{ij} - x_{ik}}
|
|
{j - k}
|
|
|
|
for pairs of distinct integer indices :math:`j, k` of :math:`x`.
|
|
|
|
Element :math:`i` of the returned `intra_slope` array is the median of the
|
|
:math:`d_{ijk}` over all :math:`j < k`; this is the Theil-Sen slope
|
|
estimator of season :math:`i`. The returned `inter_slope` value, better
|
|
known as the seasonal Kendall slope estimator, is the median of the
|
|
:math:`d_{ijk}` over all :math:`i, j, k`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Hirsch, Robert M., James R. Slack, and Richard A. Smith.
|
|
"Techniques of trend analysis for monthly water quality data."
|
|
*Water Resources Research* 18.1 (1982): 107-121.
|
|
|
|
Examples
|
|
--------
|
|
Suppose we have 100 observations of a dependent variable for each of four
|
|
seasons:
|
|
|
|
>>> import numpy as np
|
|
>>> rng = np.random.default_rng()
|
|
>>> x = rng.random(size=(100, 4))
|
|
|
|
We compute the seasonal slopes as:
|
|
|
|
>>> from scipy import stats
|
|
>>> intra_slope, inter_slope = stats.mstats.sen_seasonal_slopes(x)
|
|
|
|
If we define a function to compute all slopes between observations within
|
|
a season:
|
|
|
|
>>> def dijk(yi):
|
|
... n = len(yi)
|
|
... x = np.arange(n)
|
|
... dy = yi - yi[:, np.newaxis]
|
|
... dx = x - x[:, np.newaxis]
|
|
... # we only want unique pairs of distinct indices
|
|
... mask = np.triu(np.ones((n, n), dtype=bool), k=1)
|
|
... return dy[mask]/dx[mask]
|
|
|
|
then element ``i`` of ``intra_slope`` is the median of ``dijk[x[:, i]]``:
|
|
|
|
>>> i = 2
|
|
>>> np.allclose(np.median(dijk(x[:, i])), intra_slope[i])
|
|
True
|
|
|
|
and ``inter_slope`` is the median of the values returned by ``dijk`` for
|
|
all seasons:
|
|
|
|
>>> all_slopes = np.concatenate([dijk(x[:, i]) for i in range(x.shape[1])])
|
|
>>> np.allclose(np.median(all_slopes), inter_slope)
|
|
True
|
|
|
|
Because the data are randomly generated, we would expect the median slopes
|
|
to be nearly zero both within and across all seasons, and indeed they are:
|
|
|
|
>>> intra_slope.data
|
|
array([ 0.00124504, -0.00277761, -0.00221245, -0.00036338])
|
|
>>> inter_slope
|
|
-0.0010511779872922058
|
|
|
|
"""
|
|
x = ma.array(x, subok=True, copy=False, ndmin=2)
|
|
(n,_) = x.shape
|
|
# Get list of slopes per season
|
|
szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
|
|
for i in range(n)])
|
|
szn_medslopes = ma.median(szn_slopes, axis=0)
|
|
medslope = ma.median(szn_slopes, axis=None)
|
|
return SenSeasonalSlopesResult(szn_medslopes, medslope)
|
|
|
|
|
|
Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def ttest_1samp(a, popmean, axis=0, alternative='two-sided'):
|
|
"""
|
|
Calculates the T-test for the mean of ONE group of scores.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
sample observation
|
|
popmean : float or array_like
|
|
expected value in null hypothesis, if array_like than it must have the
|
|
same shape as `a` excluding the axis dimension
|
|
axis : int or None, optional
|
|
Axis along which to compute test. If None, compute over the whole
|
|
array `a`.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis.
|
|
The following options are available (default is 'two-sided'):
|
|
|
|
* 'two-sided': the mean of the underlying distribution of the sample
|
|
is different than the given population mean (`popmean`)
|
|
* 'less': the mean of the underlying distribution of the sample is
|
|
less than the given population mean (`popmean`)
|
|
* 'greater': the mean of the underlying distribution of the sample is
|
|
greater than the given population mean (`popmean`)
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
statistic : float or array
|
|
t-statistic
|
|
pvalue : float or array
|
|
The p-value
|
|
|
|
Notes
|
|
-----
|
|
For more details on `ttest_1samp`, see `scipy.stats.ttest_1samp`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
if a.size == 0:
|
|
return (np.nan, np.nan)
|
|
|
|
x = a.mean(axis=axis)
|
|
v = a.var(axis=axis, ddof=1)
|
|
n = a.count(axis=axis)
|
|
# force df to be an array for masked division not to throw a warning
|
|
df = ma.asanyarray(n - 1.0)
|
|
svar = ((n - 1.0) * v) / df
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
t = (x - popmean) / ma.sqrt(svar / n)
|
|
|
|
t, prob = _ttest_finish(df, t, alternative)
|
|
return Ttest_1sampResult(t, prob)
|
|
|
|
|
|
ttest_onesamp = ttest_1samp
|
|
|
|
|
|
Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def ttest_ind(a, b, axis=0, equal_var=True, alternative='two-sided'):
|
|
"""
|
|
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array_like
|
|
The arrays must have the same shape, except in the dimension
|
|
corresponding to `axis` (the first, by default).
|
|
axis : int or None, optional
|
|
Axis along which to compute test. If None, compute over the whole
|
|
arrays, `a`, and `b`.
|
|
equal_var : bool, optional
|
|
If True, perform a standard independent 2 sample test that assumes equal
|
|
population variances.
|
|
If False, perform Welch's t-test, which does not assume equal population
|
|
variance.
|
|
|
|
.. versionadded:: 0.17.0
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis.
|
|
The following options are available (default is 'two-sided'):
|
|
|
|
* 'two-sided': the means of the distributions underlying the samples
|
|
are unequal.
|
|
* 'less': the mean of the distribution underlying the first sample
|
|
is less than the mean of the distribution underlying the second
|
|
sample.
|
|
* 'greater': the mean of the distribution underlying the first
|
|
sample is greater than the mean of the distribution underlying
|
|
the second sample.
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
statistic : float or array
|
|
The calculated t-statistic.
|
|
pvalue : float or array
|
|
The p-value.
|
|
|
|
Notes
|
|
-----
|
|
For more details on `ttest_ind`, see `scipy.stats.ttest_ind`.
|
|
|
|
"""
|
|
a, b, axis = _chk2_asarray(a, b, axis)
|
|
|
|
if a.size == 0 or b.size == 0:
|
|
return Ttest_indResult(np.nan, np.nan)
|
|
|
|
(x1, x2) = (a.mean(axis), b.mean(axis))
|
|
(v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
|
|
(n1, n2) = (a.count(axis), b.count(axis))
|
|
|
|
if equal_var:
|
|
# force df to be an array for masked division not to throw a warning
|
|
df = ma.asanyarray(n1 + n2 - 2.0)
|
|
svar = ((n1-1)*v1+(n2-1)*v2) / df
|
|
denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here!
|
|
else:
|
|
vn1 = v1/n1
|
|
vn2 = v2/n2
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
|
|
|
|
# If df is undefined, variances are zero.
|
|
# It doesn't matter what df is as long as it is not NaN.
|
|
df = np.where(np.isnan(df), 1, df)
|
|
denom = ma.sqrt(vn1 + vn2)
|
|
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
t = (x1-x2) / denom
|
|
|
|
t, prob = _ttest_finish(df, t, alternative)
|
|
return Ttest_indResult(t, prob)
|
|
|
|
|
|
Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def ttest_rel(a, b, axis=0, alternative='two-sided'):
|
|
"""
|
|
Calculates the T-test on TWO RELATED samples of scores, a and b.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array_like
|
|
The arrays must have the same shape.
|
|
axis : int or None, optional
|
|
Axis along which to compute test. If None, compute over the whole
|
|
arrays, `a`, and `b`.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis.
|
|
The following options are available (default is 'two-sided'):
|
|
|
|
* 'two-sided': the means of the distributions underlying the samples
|
|
are unequal.
|
|
* 'less': the mean of the distribution underlying the first sample
|
|
is less than the mean of the distribution underlying the second
|
|
sample.
|
|
* 'greater': the mean of the distribution underlying the first
|
|
sample is greater than the mean of the distribution underlying
|
|
the second sample.
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
statistic : float or array
|
|
t-statistic
|
|
pvalue : float or array
|
|
two-tailed p-value
|
|
|
|
Notes
|
|
-----
|
|
For more details on `ttest_rel`, see `scipy.stats.ttest_rel`.
|
|
|
|
"""
|
|
a, b, axis = _chk2_asarray(a, b, axis)
|
|
if len(a) != len(b):
|
|
raise ValueError('unequal length arrays')
|
|
|
|
if a.size == 0 or b.size == 0:
|
|
return Ttest_relResult(np.nan, np.nan)
|
|
|
|
n = a.count(axis)
|
|
df = ma.asanyarray(n-1.0)
|
|
d = (a-b).astype('d')
|
|
dm = d.mean(axis)
|
|
v = d.var(axis=axis, ddof=1)
|
|
denom = ma.sqrt(v / n)
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
t = dm / denom
|
|
|
|
t, prob = _ttest_finish(df, t, alternative)
|
|
return Ttest_relResult(t, prob)
|
|
|
|
|
|
MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic',
|
|
'pvalue'))
|
|
|
|
|
|
def mannwhitneyu(x,y, use_continuity=True):
|
|
"""
|
|
Computes the Mann-Whitney statistic
|
|
|
|
Missing values in `x` and/or `y` are discarded.
|
|
|
|
Parameters
|
|
----------
|
|
x : sequence
|
|
Input
|
|
y : sequence
|
|
Input
|
|
use_continuity : {True, False}, optional
|
|
Whether a continuity correction (1/2.) should be taken into account.
|
|
|
|
Returns
|
|
-------
|
|
statistic : float
|
|
The minimum of the Mann-Whitney statistics
|
|
pvalue : float
|
|
Approximate two-sided p-value assuming a normal distribution.
|
|
|
|
"""
|
|
x = ma.asarray(x).compressed().view(ndarray)
|
|
y = ma.asarray(y).compressed().view(ndarray)
|
|
ranks = rankdata(np.concatenate([x,y]))
|
|
(nx, ny) = (len(x), len(y))
|
|
nt = nx + ny
|
|
U = ranks[:nx].sum() - nx*(nx+1)/2.
|
|
U = max(U, nx*ny - U)
|
|
u = nx*ny - U
|
|
|
|
mu = (nx*ny)/2.
|
|
sigsq = (nt**3 - nt)/12.
|
|
ties = count_tied_groups(ranks)
|
|
sigsq -= sum(v*(k**3-k) for (k,v) in ties.items())/12.
|
|
sigsq *= nx*ny/float(nt*(nt-1))
|
|
|
|
if use_continuity:
|
|
z = (U - 1/2. - mu) / ma.sqrt(sigsq)
|
|
else:
|
|
z = (U - mu) / ma.sqrt(sigsq)
|
|
|
|
prob = special.erfc(abs(z)/np.sqrt(2))
|
|
return MannwhitneyuResult(u, prob)
|
|
|
|
|
|
KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def kruskal(*args):
|
|
"""
|
|
Compute the Kruskal-Wallis H-test for independent samples
|
|
|
|
Parameters
|
|
----------
|
|
sample1, sample2, ... : array_like
|
|
Two or more arrays with the sample measurements can be given as
|
|
arguments.
|
|
|
|
Returns
|
|
-------
|
|
statistic : float
|
|
The Kruskal-Wallis H statistic, corrected for ties
|
|
pvalue : float
|
|
The p-value for the test using the assumption that H has a chi
|
|
square distribution
|
|
|
|
Notes
|
|
-----
|
|
For more details on `kruskal`, see `scipy.stats.kruskal`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats.mstats import kruskal
|
|
|
|
Random samples from three different brands of batteries were tested
|
|
to see how long the charge lasted. Results were as follows:
|
|
|
|
>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
|
|
>>> b = [6.9, 7.0, 6.1, 7.9]
|
|
>>> c = [7.2, 6.9, 6.1, 6.5]
|
|
|
|
Test the hypothesis that the distribution functions for all of the brands'
|
|
durations are identical. Use 5% level of significance.
|
|
|
|
>>> kruskal(a, b, c)
|
|
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
|
|
|
|
The null hypothesis is rejected at the 5% level of significance
|
|
because the returned p-value is less than the critical value of 5%.
|
|
|
|
"""
|
|
output = argstoarray(*args)
|
|
ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
|
|
sumrk = ranks.sum(-1)
|
|
ngrp = ranks.count(-1)
|
|
ntot = ranks.count()
|
|
H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
|
|
# Tie correction
|
|
ties = count_tied_groups(ranks)
|
|
T = 1. - sum(v*(k**3-k) for (k,v) in ties.items())/float(ntot**3-ntot)
|
|
if T == 0:
|
|
raise ValueError('All numbers are identical in kruskal')
|
|
|
|
H /= T
|
|
df = len(output) - 1
|
|
prob = distributions.chi2.sf(H, df)
|
|
return KruskalResult(H, prob)
|
|
|
|
|
|
kruskalwallis = kruskal
|
|
|
|
|
|
@_rename_parameter("mode", "method")
|
|
def ks_1samp(x, cdf, args=(), alternative="two-sided", method='auto'):
|
|
"""
|
|
Computes the Kolmogorov-Smirnov test on one sample of masked values.
|
|
|
|
Missing values in `x` are discarded.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
a 1-D array of observations of random variables.
|
|
cdf : str or callable
|
|
If a string, it should be the name of a distribution in `scipy.stats`.
|
|
If a callable, that callable is used to calculate the cdf.
|
|
args : tuple, sequence, optional
|
|
Distribution parameters, used if `cdf` is a string.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Indicates the alternative hypothesis. Default is 'two-sided'.
|
|
method : {'auto', 'exact', 'asymp'}, optional
|
|
Defines the method used for calculating the p-value.
|
|
The following options are available (default is 'auto'):
|
|
|
|
* 'auto' : use 'exact' for small size arrays, 'asymp' for large
|
|
* 'exact' : use approximation to exact distribution of test statistic
|
|
* 'asymp' : use asymptotic distribution of test statistic
|
|
|
|
Returns
|
|
-------
|
|
d : float
|
|
Value of the Kolmogorov Smirnov test
|
|
p : float
|
|
Corresponding p-value.
|
|
|
|
"""
|
|
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
|
|
alternative.lower()[0], alternative)
|
|
return scipy.stats._stats_py.ks_1samp(
|
|
x, cdf, args=args, alternative=alternative, method=method)
|
|
|
|
|
|
@_rename_parameter("mode", "method")
|
|
def ks_2samp(data1, data2, alternative="two-sided", method='auto'):
|
|
"""
|
|
Computes the Kolmogorov-Smirnov test on two samples.
|
|
|
|
Missing values in `x` and/or `y` are discarded.
|
|
|
|
Parameters
|
|
----------
|
|
data1 : array_like
|
|
First data set
|
|
data2 : array_like
|
|
Second data set
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Indicates the alternative hypothesis. Default is 'two-sided'.
|
|
method : {'auto', 'exact', 'asymp'}, optional
|
|
Defines the method used for calculating the p-value.
|
|
The following options are available (default is 'auto'):
|
|
|
|
* 'auto' : use 'exact' for small size arrays, 'asymp' for large
|
|
* 'exact' : use approximation to exact distribution of test statistic
|
|
* 'asymp' : use asymptotic distribution of test statistic
|
|
|
|
Returns
|
|
-------
|
|
d : float
|
|
Value of the Kolmogorov Smirnov test
|
|
p : float
|
|
Corresponding p-value.
|
|
|
|
"""
|
|
# Ideally this would be accomplished by
|
|
# ks_2samp = scipy.stats._stats_py.ks_2samp
|
|
# but the circular dependencies between _mstats_basic and stats prevent that.
|
|
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
|
|
alternative.lower()[0], alternative)
|
|
return scipy.stats._stats_py.ks_2samp(data1, data2,
|
|
alternative=alternative,
|
|
method=method)
|
|
|
|
|
|
ks_twosamp = ks_2samp
|
|
|
|
|
|
@_rename_parameter("mode", "method")
|
|
def kstest(data1, data2, args=(), alternative='two-sided', method='auto'):
|
|
"""
|
|
|
|
Parameters
|
|
----------
|
|
data1 : array_like
|
|
data2 : str, callable or array_like
|
|
args : tuple, sequence, optional
|
|
Distribution parameters, used if `data1` or `data2` are strings.
|
|
alternative : str, as documented in stats.kstest
|
|
method : str, as documented in stats.kstest
|
|
|
|
Returns
|
|
-------
|
|
tuple of (K-S statistic, probability)
|
|
|
|
"""
|
|
return scipy.stats._stats_py.kstest(data1, data2, args,
|
|
alternative=alternative, method=method)
|
|
|
|
|
|
def trima(a, limits=None, inclusive=(True,True)):
|
|
"""
|
|
Trims an array by masking the data outside some given limits.
|
|
|
|
Returns a masked version of the input array.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Input array.
|
|
limits : {None, tuple}, optional
|
|
Tuple of (lower limit, upper limit) in absolute values.
|
|
Values of the input array lower (greater) than the lower (upper) limit
|
|
will be masked. A limit is None indicates an open interval.
|
|
inclusive : (bool, bool) tuple, optional
|
|
Tuple of (lower flag, upper flag), indicating whether values exactly
|
|
equal to the lower (upper) limit are allowed.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats.mstats import trima
|
|
>>> import numpy as np
|
|
|
|
>>> a = np.arange(10)
|
|
|
|
The interval is left-closed and right-open, i.e., `[2, 8)`.
|
|
Trim the array by keeping only values in the interval.
|
|
|
|
>>> trima(a, limits=(2, 8), inclusive=(True, False))
|
|
masked_array(data=[--, --, 2, 3, 4, 5, 6, 7, --, --],
|
|
mask=[ True, True, False, False, False, False, False, False,
|
|
True, True],
|
|
fill_value=999999)
|
|
|
|
"""
|
|
a = ma.asarray(a)
|
|
a.unshare_mask()
|
|
if (limits is None) or (limits == (None, None)):
|
|
return a
|
|
|
|
(lower_lim, upper_lim) = limits
|
|
(lower_in, upper_in) = inclusive
|
|
condition = False
|
|
if lower_lim is not None:
|
|
if lower_in:
|
|
condition |= (a < lower_lim)
|
|
else:
|
|
condition |= (a <= lower_lim)
|
|
|
|
if upper_lim is not None:
|
|
if upper_in:
|
|
condition |= (a > upper_lim)
|
|
else:
|
|
condition |= (a >= upper_lim)
|
|
|
|
a[condition.filled(True)] = masked
|
|
return a
|
|
|
|
|
|
def trimr(a, limits=None, inclusive=(True, True), axis=None):
|
|
"""
|
|
Trims an array by masking some proportion of the data on each end.
|
|
Returns a masked version of the input array.
|
|
|
|
Parameters
|
|
----------
|
|
a : sequence
|
|
Input array.
|
|
limits : {None, tuple}, optional
|
|
Tuple of the percentages to cut on each side of the array, with respect
|
|
to the number of unmasked data, as floats between 0. and 1.
|
|
Noting n the number of unmasked data before trimming, the
|
|
(n*limits[0])th smallest data and the (n*limits[1])th largest data are
|
|
masked, and the total number of unmasked data after trimming is
|
|
n*(1.-sum(limits)). The value of one limit can be set to None to
|
|
indicate an open interval.
|
|
inclusive : {(True,True) tuple}, optional
|
|
Tuple of flags indicating whether the number of data being masked on
|
|
the left (right) end should be truncated (True) or rounded (False) to
|
|
integers.
|
|
axis : {None,int}, optional
|
|
Axis along which to trim. If None, the whole array is trimmed, but its
|
|
shape is maintained.
|
|
|
|
"""
|
|
def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
|
|
n = a.count()
|
|
idx = a.argsort()
|
|
if low_limit:
|
|
if low_inclusive:
|
|
lowidx = int(low_limit*n)
|
|
else:
|
|
lowidx = int(np.round(low_limit*n))
|
|
a[idx[:lowidx]] = masked
|
|
if up_limit is not None:
|
|
if up_inclusive:
|
|
upidx = n - int(n*up_limit)
|
|
else:
|
|
upidx = n - int(np.round(n*up_limit))
|
|
a[idx[upidx:]] = masked
|
|
return a
|
|
|
|
a = ma.asarray(a)
|
|
a.unshare_mask()
|
|
if limits is None:
|
|
return a
|
|
|
|
# Check the limits
|
|
(lolim, uplim) = limits
|
|
errmsg = "The proportion to cut from the %s should be between 0. and 1."
|
|
if lolim is not None:
|
|
if lolim > 1. or lolim < 0:
|
|
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
|
|
if uplim is not None:
|
|
if uplim > 1. or uplim < 0:
|
|
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
|
|
|
|
(loinc, upinc) = inclusive
|
|
|
|
if axis is None:
|
|
shp = a.shape
|
|
return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
|
|
else:
|
|
return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)
|
|
|
|
|
|
trimdoc = """
|
|
Parameters
|
|
----------
|
|
a : sequence
|
|
Input array
|
|
limits : {None, tuple}, optional
|
|
If `relative` is False, tuple (lower limit, upper limit) in absolute values.
|
|
Values of the input array lower (greater) than the lower (upper) limit are
|
|
masked.
|
|
|
|
If `relative` is True, tuple (lower percentage, upper percentage) to cut
|
|
on each side of the array, with respect to the number of unmasked data.
|
|
|
|
Noting n the number of unmasked data before trimming, the (n*limits[0])th
|
|
smallest data and the (n*limits[1])th largest data are masked, and the
|
|
total number of unmasked data after trimming is n*(1.-sum(limits))
|
|
In each case, the value of one limit can be set to None to indicate an
|
|
open interval.
|
|
|
|
If limits is None, no trimming is performed
|
|
inclusive : {(bool, bool) tuple}, optional
|
|
If `relative` is False, tuple indicating whether values exactly equal
|
|
to the absolute limits are allowed.
|
|
If `relative` is True, tuple indicating whether the number of data
|
|
being masked on each side should be rounded (True) or truncated
|
|
(False).
|
|
relative : bool, optional
|
|
Whether to consider the limits as absolute values (False) or proportions
|
|
to cut (True).
|
|
axis : int, optional
|
|
Axis along which to trim.
|
|
"""
|
|
|
|
|
|
def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
|
|
"""
|
|
Trims an array by masking the data outside some given limits.
|
|
|
|
Returns a masked version of the input array.
|
|
|
|
%s
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats.mstats import trim
|
|
>>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
|
|
>>> print(trim(z,(3,8)))
|
|
[-- -- 3 4 5 6 7 8 -- --]
|
|
>>> print(trim(z,(0.1,0.2),relative=True))
|
|
[-- 2 3 4 5 6 7 8 -- --]
|
|
|
|
"""
|
|
if relative:
|
|
return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
|
|
else:
|
|
return trima(a, limits=limits, inclusive=inclusive)
|
|
|
|
|
|
if trim.__doc__:
|
|
trim.__doc__ = trim.__doc__ % trimdoc
|
|
|
|
|
|
def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
|
|
"""
|
|
Trims the smallest and largest data values.
|
|
|
|
Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and
|
|
``int(proportiontocut * n)`` largest values of data along the given axis,
|
|
where n is the number of unmasked values before trimming.
|
|
|
|
Parameters
|
|
----------
|
|
data : ndarray
|
|
Data to trim.
|
|
proportiontocut : float, optional
|
|
Percentage of trimming (as a float between 0 and 1).
|
|
If n is the number of unmasked values before trimming, the number of
|
|
values after trimming is ``(1 - 2*proportiontocut) * n``.
|
|
Default is 0.2.
|
|
inclusive : {(bool, bool) tuple}, optional
|
|
Tuple indicating whether the number of data being masked on each side
|
|
should be rounded (True) or truncated (False).
|
|
axis : int, optional
|
|
Axis along which to perform the trimming.
|
|
If None, the input array is first flattened.
|
|
|
|
"""
|
|
return trimr(data, limits=(proportiontocut,proportiontocut),
|
|
inclusive=inclusive, axis=axis)
|
|
|
|
|
|
def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
|
|
axis=None):
|
|
"""
|
|
Trims the data by masking values from one tail.
|
|
|
|
Parameters
|
|
----------
|
|
data : array_like
|
|
Data to trim.
|
|
proportiontocut : float, optional
|
|
Percentage of trimming. If n is the number of unmasked values
|
|
before trimming, the number of values after trimming is
|
|
``(1 - proportiontocut) * n``. Default is 0.2.
|
|
tail : {'left','right'}, optional
|
|
If 'left' the `proportiontocut` lowest values will be masked.
|
|
If 'right' the `proportiontocut` highest values will be masked.
|
|
Default is 'left'.
|
|
inclusive : {(bool, bool) tuple}, optional
|
|
Tuple indicating whether the number of data being masked on each side
|
|
should be rounded (True) or truncated (False). Default is
|
|
(True, True).
|
|
axis : int, optional
|
|
Axis along which to perform the trimming.
|
|
If None, the input array is first flattened. Default is None.
|
|
|
|
Returns
|
|
-------
|
|
trimtail : ndarray
|
|
Returned array of same shape as `data` with masked tail values.
|
|
|
|
"""
|
|
tail = str(tail).lower()[0]
|
|
if tail == 'l':
|
|
limits = (proportiontocut,None)
|
|
elif tail == 'r':
|
|
limits = (None, proportiontocut)
|
|
else:
|
|
raise TypeError("The tail argument should be in ('left','right')")
|
|
|
|
return trimr(data, limits=limits, axis=axis, inclusive=inclusive)
|
|
|
|
|
|
trim1 = trimtail
|
|
|
|
|
|
def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
|
|
axis=None):
|
|
"""Returns the trimmed mean of the data along the given axis.
|
|
|
|
%s
|
|
|
|
"""
|
|
if (not isinstance(limits,tuple)) and isinstance(limits,float):
|
|
limits = (limits, limits)
|
|
if relative:
|
|
return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
|
|
else:
|
|
return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)
|
|
|
|
|
|
if trimmed_mean.__doc__:
|
|
trimmed_mean.__doc__ = trimmed_mean.__doc__ % trimdoc
|
|
|
|
|
|
def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
|
|
axis=None, ddof=0):
|
|
"""Returns the trimmed variance of the data along the given axis.
|
|
|
|
%s
|
|
ddof : {0,integer}, optional
|
|
Means Delta Degrees of Freedom. The denominator used during computations
|
|
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
|
|
biased estimate of the variance.
|
|
|
|
"""
|
|
if (not isinstance(limits,tuple)) and isinstance(limits,float):
|
|
limits = (limits, limits)
|
|
if relative:
|
|
out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
|
|
else:
|
|
out = trima(a,limits=limits,inclusive=inclusive)
|
|
|
|
return out.var(axis=axis, ddof=ddof)
|
|
|
|
|
|
if trimmed_var.__doc__:
|
|
trimmed_var.__doc__ = trimmed_var.__doc__ % trimdoc
|
|
|
|
|
|
def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
|
|
axis=None, ddof=0):
|
|
"""Returns the trimmed standard deviation of the data along the given axis.
|
|
|
|
%s
|
|
ddof : {0,integer}, optional
|
|
Means Delta Degrees of Freedom. The denominator used during computations
|
|
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
|
|
biased estimate of the variance.
|
|
|
|
"""
|
|
if (not isinstance(limits,tuple)) and isinstance(limits,float):
|
|
limits = (limits, limits)
|
|
if relative:
|
|
out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
|
|
else:
|
|
out = trima(a,limits=limits,inclusive=inclusive)
|
|
return out.std(axis=axis,ddof=ddof)
|
|
|
|
|
|
if trimmed_std.__doc__:
|
|
trimmed_std.__doc__ = trimmed_std.__doc__ % trimdoc
|
|
|
|
|
|
def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
|
|
"""
|
|
Returns the standard error of the trimmed mean along the given axis.
|
|
|
|
Parameters
|
|
----------
|
|
a : sequence
|
|
Input array
|
|
limits : {(0.1,0.1), tuple of float}, optional
|
|
tuple (lower percentage, upper percentage) to cut on each side of the
|
|
array, with respect to the number of unmasked data.
|
|
|
|
If n is the number of unmasked data before trimming, the values
|
|
smaller than ``n * limits[0]`` and the values larger than
|
|
``n * `limits[1]`` are masked, and the total number of unmasked
|
|
data after trimming is ``n * (1.-sum(limits))``. In each case,
|
|
the value of one limit can be set to None to indicate an open interval.
|
|
If `limits` is None, no trimming is performed.
|
|
inclusive : {(bool, bool) tuple} optional
|
|
Tuple indicating whether the number of data being masked on each side
|
|
should be rounded (True) or truncated (False).
|
|
axis : int, optional
|
|
Axis along which to trim.
|
|
|
|
Returns
|
|
-------
|
|
trimmed_stde : scalar or ndarray
|
|
|
|
"""
|
|
def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
|
|
"Returns the standard error of the trimmed mean for a 1D input data."
|
|
n = a.count()
|
|
idx = a.argsort()
|
|
if low_limit:
|
|
if low_inclusive:
|
|
lowidx = int(low_limit*n)
|
|
else:
|
|
lowidx = np.round(low_limit*n)
|
|
a[idx[:lowidx]] = masked
|
|
if up_limit is not None:
|
|
if up_inclusive:
|
|
upidx = n - int(n*up_limit)
|
|
else:
|
|
upidx = n - np.round(n*up_limit)
|
|
a[idx[upidx:]] = masked
|
|
a[idx[:lowidx]] = a[idx[lowidx]]
|
|
a[idx[upidx:]] = a[idx[upidx-1]]
|
|
winstd = a.std(ddof=1)
|
|
return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))
|
|
|
|
a = ma.array(a, copy=True, subok=True)
|
|
a.unshare_mask()
|
|
if limits is None:
|
|
return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
|
|
if (not isinstance(limits,tuple)) and isinstance(limits,float):
|
|
limits = (limits, limits)
|
|
|
|
# Check the limits
|
|
(lolim, uplim) = limits
|
|
errmsg = "The proportion to cut from the %s should be between 0. and 1."
|
|
if lolim is not None:
|
|
if lolim > 1. or lolim < 0:
|
|
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
|
|
if uplim is not None:
|
|
if uplim > 1. or uplim < 0:
|
|
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
|
|
|
|
(loinc, upinc) = inclusive
|
|
if (axis is None):
|
|
return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
|
|
else:
|
|
if a.ndim > 2:
|
|
raise ValueError("Array 'a' must be at most two dimensional, "
|
|
"but got a.ndim = %d" % a.ndim)
|
|
return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
|
|
lolim,uplim,loinc,upinc)
|
|
|
|
|
|
def _mask_to_limits(a, limits, inclusive):
|
|
"""Mask an array for values outside of given limits.
|
|
|
|
This is primarily a utility function.
|
|
|
|
Parameters
|
|
----------
|
|
a : array
|
|
limits : (float or None, float or None)
|
|
A tuple consisting of the (lower limit, upper limit). Values in the
|
|
input array less than the lower limit or greater than the upper limit
|
|
will be masked out. None implies no limit.
|
|
inclusive : (bool, bool)
|
|
A tuple consisting of the (lower flag, upper flag). These flags
|
|
determine whether values exactly equal to lower or upper are allowed.
|
|
|
|
Returns
|
|
-------
|
|
A MaskedArray.
|
|
|
|
Raises
|
|
------
|
|
A ValueError if there are no values within the given limits.
|
|
"""
|
|
lower_limit, upper_limit = limits
|
|
lower_include, upper_include = inclusive
|
|
am = ma.MaskedArray(a)
|
|
if lower_limit is not None:
|
|
if lower_include:
|
|
am = ma.masked_less(am, lower_limit)
|
|
else:
|
|
am = ma.masked_less_equal(am, lower_limit)
|
|
|
|
if upper_limit is not None:
|
|
if upper_include:
|
|
am = ma.masked_greater(am, upper_limit)
|
|
else:
|
|
am = ma.masked_greater_equal(am, upper_limit)
|
|
|
|
if am.count() == 0:
|
|
raise ValueError("No array values within given limits")
|
|
|
|
return am
|
|
|
|
|
|
def tmean(a, limits=None, inclusive=(True, True), axis=None):
|
|
"""
|
|
Compute the trimmed mean.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Array of values.
|
|
limits : None or (lower limit, upper limit), optional
|
|
Values in the input array less than the lower limit or greater than the
|
|
upper limit will be ignored. When limits is None (default), then all
|
|
values are used. Either of the limit values in the tuple can also be
|
|
None representing a half-open interval.
|
|
inclusive : (bool, bool), optional
|
|
A tuple consisting of the (lower flag, upper flag). These flags
|
|
determine whether values exactly equal to the lower or upper limits
|
|
are included. The default value is (True, True).
|
|
axis : int or None, optional
|
|
Axis along which to operate. If None, compute over the
|
|
whole array. Default is None.
|
|
|
|
Returns
|
|
-------
|
|
tmean : float
|
|
|
|
Notes
|
|
-----
|
|
For more details on `tmean`, see `scipy.stats.tmean`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats import mstats
|
|
>>> a = np.array([[6, 8, 3, 0],
|
|
... [3, 9, 1, 2],
|
|
... [8, 7, 8, 2],
|
|
... [5, 6, 0, 2],
|
|
... [4, 5, 5, 2]])
|
|
...
|
|
...
|
|
>>> mstats.tmean(a, (2,5))
|
|
3.3
|
|
>>> mstats.tmean(a, (2,5), axis=0)
|
|
masked_array(data=[4.0, 5.0, 4.0, 2.0],
|
|
mask=[False, False, False, False],
|
|
fill_value=1e+20)
|
|
|
|
"""
|
|
return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis)
|
|
|
|
|
|
def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
|
|
"""
|
|
Compute the trimmed variance
|
|
|
|
This function computes the sample variance of an array of values,
|
|
while ignoring values which are outside of given `limits`.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Array of values.
|
|
limits : None or (lower limit, upper limit), optional
|
|
Values in the input array less than the lower limit or greater than the
|
|
upper limit will be ignored. When limits is None, then all values are
|
|
used. Either of the limit values in the tuple can also be None
|
|
representing a half-open interval. The default value is None.
|
|
inclusive : (bool, bool), optional
|
|
A tuple consisting of the (lower flag, upper flag). These flags
|
|
determine whether values exactly equal to the lower or upper limits
|
|
are included. The default value is (True, True).
|
|
axis : int or None, optional
|
|
Axis along which to operate. If None, compute over the
|
|
whole array. Default is zero.
|
|
ddof : int, optional
|
|
Delta degrees of freedom. Default is 1.
|
|
|
|
Returns
|
|
-------
|
|
tvar : float
|
|
Trimmed variance.
|
|
|
|
Notes
|
|
-----
|
|
For more details on `tvar`, see `scipy.stats.tvar`.
|
|
|
|
"""
|
|
a = a.astype(float).ravel()
|
|
if limits is None:
|
|
n = (~a.mask).sum() # todo: better way to do that?
|
|
return np.ma.var(a) * n/(n-1.)
|
|
am = _mask_to_limits(a, limits=limits, inclusive=inclusive)
|
|
|
|
return np.ma.var(am, axis=axis, ddof=ddof)
|
|
|
|
|
|
def tmin(a, lowerlimit=None, axis=0, inclusive=True):
|
|
"""
|
|
Compute the trimmed minimum
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
array of values
|
|
lowerlimit : None or float, optional
|
|
Values in the input array less than the given limit will be ignored.
|
|
When lowerlimit is None, then all values are used. The default value
|
|
is None.
|
|
axis : int or None, optional
|
|
Axis along which to operate. Default is 0. If None, compute over the
|
|
whole array `a`.
|
|
inclusive : {True, False}, optional
|
|
This flag determines whether values exactly equal to the lower limit
|
|
are included. The default value is True.
|
|
|
|
Returns
|
|
-------
|
|
tmin : float, int or ndarray
|
|
|
|
Notes
|
|
-----
|
|
For more details on `tmin`, see `scipy.stats.tmin`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats import mstats
|
|
>>> a = np.array([[6, 8, 3, 0],
|
|
... [3, 2, 1, 2],
|
|
... [8, 1, 8, 2],
|
|
... [5, 3, 0, 2],
|
|
... [4, 7, 5, 2]])
|
|
...
|
|
>>> mstats.tmin(a, 5)
|
|
masked_array(data=[5, 7, 5, --],
|
|
mask=[False, False, False, True],
|
|
fill_value=999999)
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
am = trima(a, (lowerlimit, None), (inclusive, False))
|
|
return ma.minimum.reduce(am, axis)
|
|
|
|
|
|
def tmax(a, upperlimit=None, axis=0, inclusive=True):
|
|
"""
|
|
Compute the trimmed maximum
|
|
|
|
This function computes the maximum value of an array along a given axis,
|
|
while ignoring values larger than a specified upper limit.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
array of values
|
|
upperlimit : None or float, optional
|
|
Values in the input array greater than the given limit will be ignored.
|
|
When upperlimit is None, then all values are used. The default value
|
|
is None.
|
|
axis : int or None, optional
|
|
Axis along which to operate. Default is 0. If None, compute over the
|
|
whole array `a`.
|
|
inclusive : {True, False}, optional
|
|
This flag determines whether values exactly equal to the upper limit
|
|
are included. The default value is True.
|
|
|
|
Returns
|
|
-------
|
|
tmax : float, int or ndarray
|
|
|
|
Notes
|
|
-----
|
|
For more details on `tmax`, see `scipy.stats.tmax`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats import mstats
|
|
>>> a = np.array([[6, 8, 3, 0],
|
|
... [3, 9, 1, 2],
|
|
... [8, 7, 8, 2],
|
|
... [5, 6, 0, 2],
|
|
... [4, 5, 5, 2]])
|
|
...
|
|
...
|
|
>>> mstats.tmax(a, 4)
|
|
masked_array(data=[4, --, 3, 2],
|
|
mask=[False, True, False, False],
|
|
fill_value=999999)
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
am = trima(a, (None, upperlimit), (False, inclusive))
|
|
return ma.maximum.reduce(am, axis)
|
|
|
|
|
|
def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
|
|
"""
|
|
Compute the trimmed standard error of the mean.
|
|
|
|
This function finds the standard error of the mean for given
|
|
values, ignoring values outside the given `limits`.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
array of values
|
|
limits : None or (lower limit, upper limit), optional
|
|
Values in the input array less than the lower limit or greater than the
|
|
upper limit will be ignored. When limits is None, then all values are
|
|
used. Either of the limit values in the tuple can also be None
|
|
representing a half-open interval. The default value is None.
|
|
inclusive : (bool, bool), optional
|
|
A tuple consisting of the (lower flag, upper flag). These flags
|
|
determine whether values exactly equal to the lower or upper limits
|
|
are included. The default value is (True, True).
|
|
axis : int or None, optional
|
|
Axis along which to operate. If None, compute over the
|
|
whole array. Default is zero.
|
|
ddof : int, optional
|
|
Delta degrees of freedom. Default is 1.
|
|
|
|
Returns
|
|
-------
|
|
tsem : float
|
|
|
|
Notes
|
|
-----
|
|
For more details on `tsem`, see `scipy.stats.tsem`.
|
|
|
|
"""
|
|
a = ma.asarray(a).ravel()
|
|
if limits is None:
|
|
n = float(a.count())
|
|
return a.std(axis=axis, ddof=ddof)/ma.sqrt(n)
|
|
|
|
am = trima(a.ravel(), limits, inclusive)
|
|
sd = np.sqrt(am.var(axis=axis, ddof=ddof))
|
|
return sd / np.sqrt(am.count())
|
|
|
|
|
|
def winsorize(a, limits=None, inclusive=(True, True), inplace=False,
|
|
axis=None, nan_policy='propagate'):
|
|
"""Returns a Winsorized version of the input array.
|
|
|
|
The (limits[0])th lowest values are set to the (limits[0])th percentile,
|
|
and the (limits[1])th highest values are set to the (1 - limits[1])th
|
|
percentile.
|
|
Masked values are skipped.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
a : sequence
|
|
Input array.
|
|
limits : {None, tuple of float}, optional
|
|
Tuple of the percentages to cut on each side of the array, with respect
|
|
to the number of unmasked data, as floats between 0. and 1.
|
|
Noting n the number of unmasked data before trimming, the
|
|
(n*limits[0])th smallest data and the (n*limits[1])th largest data are
|
|
masked, and the total number of unmasked data after trimming
|
|
is n*(1.-sum(limits)) The value of one limit can be set to None to
|
|
indicate an open interval.
|
|
inclusive : {(True, True) tuple}, optional
|
|
Tuple indicating whether the number of data being masked on each side
|
|
should be truncated (True) or rounded (False).
|
|
inplace : {False, True}, optional
|
|
Whether to winsorize in place (True) or to use a copy (False)
|
|
axis : {None, int}, optional
|
|
Axis along which to trim. If None, the whole array is trimmed, but its
|
|
shape is maintained.
|
|
nan_policy : {'propagate', 'raise', 'omit'}, optional
|
|
Defines how to handle when input contains nan.
|
|
The following options are available (default is 'propagate'):
|
|
|
|
* 'propagate': allows nan values and may overwrite or propagate them
|
|
* 'raise': throws an error
|
|
* 'omit': performs the calculations ignoring nan values
|
|
|
|
Notes
|
|
-----
|
|
This function is applied to reduce the effect of possibly spurious outliers
|
|
by limiting the extreme values.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats.mstats import winsorize
|
|
|
|
A shuffled array contains integers from 1 to 10.
|
|
|
|
>>> a = np.array([10, 4, 9, 8, 5, 3, 7, 2, 1, 6])
|
|
|
|
The 10% of the lowest value (i.e., `1`) and the 20% of the highest
|
|
values (i.e., `9` and `10`) are replaced.
|
|
|
|
>>> winsorize(a, limits=[0.1, 0.2])
|
|
masked_array(data=[8, 4, 8, 8, 5, 3, 7, 2, 2, 6],
|
|
mask=False,
|
|
fill_value=999999)
|
|
|
|
"""
|
|
def _winsorize1D(a, low_limit, up_limit, low_include, up_include,
|
|
contains_nan, nan_policy):
|
|
n = a.count()
|
|
idx = a.argsort()
|
|
if contains_nan:
|
|
nan_count = np.count_nonzero(np.isnan(a))
|
|
if low_limit:
|
|
if low_include:
|
|
lowidx = int(low_limit * n)
|
|
else:
|
|
lowidx = np.round(low_limit * n).astype(int)
|
|
if contains_nan and nan_policy == 'omit':
|
|
lowidx = min(lowidx, n-nan_count-1)
|
|
a[idx[:lowidx]] = a[idx[lowidx]]
|
|
if up_limit is not None:
|
|
if up_include:
|
|
upidx = n - int(n * up_limit)
|
|
else:
|
|
upidx = n - np.round(n * up_limit).astype(int)
|
|
if contains_nan and nan_policy == 'omit':
|
|
a[idx[upidx:-nan_count]] = a[idx[upidx - 1]]
|
|
else:
|
|
a[idx[upidx:]] = a[idx[upidx - 1]]
|
|
return a
|
|
|
|
contains_nan, nan_policy = _contains_nan(a, nan_policy)
|
|
# We are going to modify a: better make a copy
|
|
a = ma.array(a, copy=np.logical_not(inplace))
|
|
|
|
if limits is None:
|
|
return a
|
|
if (not isinstance(limits, tuple)) and isinstance(limits, float):
|
|
limits = (limits, limits)
|
|
|
|
# Check the limits
|
|
(lolim, uplim) = limits
|
|
errmsg = "The proportion to cut from the %s should be between 0. and 1."
|
|
if lolim is not None:
|
|
if lolim > 1. or lolim < 0:
|
|
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
|
|
if uplim is not None:
|
|
if uplim > 1. or uplim < 0:
|
|
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
|
|
|
|
(loinc, upinc) = inclusive
|
|
|
|
if axis is None:
|
|
shp = a.shape
|
|
return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc,
|
|
contains_nan, nan_policy).reshape(shp)
|
|
else:
|
|
return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc,
|
|
upinc, contains_nan, nan_policy)
|
|
|
|
|
|
def moment(a, moment=1, axis=0):
|
|
"""
|
|
Calculates the nth moment about the mean for a sample.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
data
|
|
moment : int, optional
|
|
order of central moment that is returned
|
|
axis : int or None, optional
|
|
Axis along which the central moment is computed. Default is 0.
|
|
If None, compute over the whole array `a`.
|
|
|
|
Returns
|
|
-------
|
|
n-th central moment : ndarray or float
|
|
The appropriate moment along the given axis or over all values if axis
|
|
is None. The denominator for the moment calculation is the number of
|
|
observations, no degrees of freedom correction is done.
|
|
|
|
Notes
|
|
-----
|
|
For more details about `moment`, see `scipy.stats.moment`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
if a.size == 0:
|
|
moment_shape = list(a.shape)
|
|
del moment_shape[axis]
|
|
dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64
|
|
# empty array, return nan(s) with shape matching `moment`
|
|
out_shape = (moment_shape if np.isscalar(moment)
|
|
else [len(moment)] + moment_shape)
|
|
if len(out_shape) == 0:
|
|
return dtype(np.nan)
|
|
else:
|
|
return ma.array(np.full(out_shape, np.nan, dtype=dtype))
|
|
|
|
# for array_like moment input, return a value for each.
|
|
if not np.isscalar(moment):
|
|
mean = a.mean(axis, keepdims=True)
|
|
mmnt = [_moment(a, i, axis, mean=mean) for i in moment]
|
|
return ma.array(mmnt)
|
|
else:
|
|
return _moment(a, moment, axis)
|
|
|
|
|
|
# Moment with optional pre-computed mean, equal to a.mean(axis, keepdims=True)
|
|
def _moment(a, moment, axis, *, mean=None):
|
|
if np.abs(moment - np.round(moment)) > 0:
|
|
raise ValueError("All moment parameters must be integers")
|
|
|
|
if moment == 0 or moment == 1:
|
|
# By definition the zeroth moment about the mean is 1, and the first
|
|
# moment is 0.
|
|
shape = list(a.shape)
|
|
del shape[axis]
|
|
dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64
|
|
|
|
if len(shape) == 0:
|
|
return dtype(1.0 if moment == 0 else 0.0)
|
|
else:
|
|
return (ma.ones(shape, dtype=dtype) if moment == 0
|
|
else ma.zeros(shape, dtype=dtype))
|
|
else:
|
|
# Exponentiation by squares: form exponent sequence
|
|
n_list = [moment]
|
|
current_n = moment
|
|
while current_n > 2:
|
|
if current_n % 2:
|
|
current_n = (current_n-1)/2
|
|
else:
|
|
current_n /= 2
|
|
n_list.append(current_n)
|
|
|
|
# Starting point for exponentiation by squares
|
|
mean = a.mean(axis, keepdims=True) if mean is None else mean
|
|
a_zero_mean = a - mean
|
|
if n_list[-1] == 1:
|
|
s = a_zero_mean.copy()
|
|
else:
|
|
s = a_zero_mean**2
|
|
|
|
# Perform multiplications
|
|
for n in n_list[-2::-1]:
|
|
s = s**2
|
|
if n % 2:
|
|
s *= a_zero_mean
|
|
return s.mean(axis)
|
|
|
|
|
|
def variation(a, axis=0, ddof=0):
|
|
"""
|
|
Compute the coefficient of variation.
|
|
|
|
The coefficient of variation is the standard deviation divided by the
|
|
mean. This function is equivalent to::
|
|
|
|
np.std(x, axis=axis, ddof=ddof) / np.mean(x)
|
|
|
|
The default for ``ddof`` is 0, but many definitions of the coefficient
|
|
of variation use the square root of the unbiased sample variance
|
|
for the sample standard deviation, which corresponds to ``ddof=1``.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Input array.
|
|
axis : int or None, optional
|
|
Axis along which to calculate the coefficient of variation. Default
|
|
is 0. If None, compute over the whole array `a`.
|
|
ddof : int, optional
|
|
Delta degrees of freedom. Default is 0.
|
|
|
|
Returns
|
|
-------
|
|
variation : ndarray
|
|
The calculated variation along the requested axis.
|
|
|
|
Notes
|
|
-----
|
|
For more details about `variation`, see `scipy.stats.variation`.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats.mstats import variation
|
|
>>> a = np.array([2,8,4])
|
|
>>> variation(a)
|
|
0.5345224838248487
|
|
>>> b = np.array([2,8,3,4])
|
|
>>> c = np.ma.masked_array(b, mask=[0,0,1,0])
|
|
>>> variation(c)
|
|
0.5345224838248487
|
|
|
|
In the example above, it can be seen that this works the same as
|
|
`scipy.stats.variation` except 'stats.mstats.variation' ignores masked
|
|
array elements.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
return a.std(axis, ddof=ddof)/a.mean(axis)
|
|
|
|
|
|
def skew(a, axis=0, bias=True):
|
|
"""
|
|
Computes the skewness of a data set.
|
|
|
|
Parameters
|
|
----------
|
|
a : ndarray
|
|
data
|
|
axis : int or None, optional
|
|
Axis along which skewness is calculated. Default is 0.
|
|
If None, compute over the whole array `a`.
|
|
bias : bool, optional
|
|
If False, then the calculations are corrected for statistical bias.
|
|
|
|
Returns
|
|
-------
|
|
skewness : ndarray
|
|
The skewness of values along an axis, returning 0 where all values are
|
|
equal.
|
|
|
|
Notes
|
|
-----
|
|
For more details about `skew`, see `scipy.stats.skew`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a,axis)
|
|
mean = a.mean(axis, keepdims=True)
|
|
m2 = _moment(a, 2, axis, mean=mean)
|
|
m3 = _moment(a, 3, axis, mean=mean)
|
|
zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
|
|
with np.errstate(all='ignore'):
|
|
vals = ma.where(zero, 0, m3 / m2**1.5)
|
|
|
|
if not bias and zero is not ma.masked and m2 is not ma.masked:
|
|
n = a.count(axis)
|
|
can_correct = ~zero & (n > 2)
|
|
if can_correct.any():
|
|
n = np.extract(can_correct, n)
|
|
m2 = np.extract(can_correct, m2)
|
|
m3 = np.extract(can_correct, m3)
|
|
nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
|
|
np.place(vals, can_correct, nval)
|
|
return vals
|
|
|
|
|
|
def kurtosis(a, axis=0, fisher=True, bias=True):
|
|
"""
|
|
Computes the kurtosis (Fisher or Pearson) of a dataset.
|
|
|
|
Kurtosis is the fourth central moment divided by the square of the
|
|
variance. If Fisher's definition is used, then 3.0 is subtracted from
|
|
the result to give 0.0 for a normal distribution.
|
|
|
|
If bias is False then the kurtosis is calculated using k statistics to
|
|
eliminate bias coming from biased moment estimators
|
|
|
|
Use `kurtosistest` to see if result is close enough to normal.
|
|
|
|
Parameters
|
|
----------
|
|
a : array
|
|
data for which the kurtosis is calculated
|
|
axis : int or None, optional
|
|
Axis along which the kurtosis is calculated. Default is 0.
|
|
If None, compute over the whole array `a`.
|
|
fisher : bool, optional
|
|
If True, Fisher's definition is used (normal ==> 0.0). If False,
|
|
Pearson's definition is used (normal ==> 3.0).
|
|
bias : bool, optional
|
|
If False, then the calculations are corrected for statistical bias.
|
|
|
|
Returns
|
|
-------
|
|
kurtosis : array
|
|
The kurtosis of values along an axis. If all values are equal,
|
|
return -3 for Fisher's definition and 0 for Pearson's definition.
|
|
|
|
Notes
|
|
-----
|
|
For more details about `kurtosis`, see `scipy.stats.kurtosis`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
mean = a.mean(axis, keepdims=True)
|
|
m2 = _moment(a, 2, axis, mean=mean)
|
|
m4 = _moment(a, 4, axis, mean=mean)
|
|
zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
|
|
with np.errstate(all='ignore'):
|
|
vals = ma.where(zero, 0, m4 / m2**2.0)
|
|
|
|
if not bias and zero is not ma.masked and m2 is not ma.masked:
|
|
n = a.count(axis)
|
|
can_correct = ~zero & (n > 3)
|
|
if can_correct.any():
|
|
n = np.extract(can_correct, n)
|
|
m2 = np.extract(can_correct, m2)
|
|
m4 = np.extract(can_correct, m4)
|
|
nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
|
|
np.place(vals, can_correct, nval+3.0)
|
|
if fisher:
|
|
return vals - 3
|
|
else:
|
|
return vals
|
|
|
|
|
|
DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean',
|
|
'variance', 'skewness',
|
|
'kurtosis'))
|
|
|
|
|
|
def describe(a, axis=0, ddof=0, bias=True):
|
|
"""
|
|
Computes several descriptive statistics of the passed array.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Data array
|
|
axis : int or None, optional
|
|
Axis along which to calculate statistics. Default 0. If None,
|
|
compute over the whole array `a`.
|
|
ddof : int, optional
|
|
degree of freedom (default 0); note that default ddof is different
|
|
from the same routine in stats.describe
|
|
bias : bool, optional
|
|
If False, then the skewness and kurtosis calculations are corrected for
|
|
statistical bias.
|
|
|
|
Returns
|
|
-------
|
|
nobs : int
|
|
(size of the data (discarding missing values)
|
|
|
|
minmax : (int, int)
|
|
min, max
|
|
|
|
mean : float
|
|
arithmetic mean
|
|
|
|
variance : float
|
|
unbiased variance
|
|
|
|
skewness : float
|
|
biased skewness
|
|
|
|
kurtosis : float
|
|
biased kurtosis
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats.mstats import describe
|
|
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
|
|
>>> describe(ma)
|
|
DescribeResult(nobs=np.int64(3), minmax=(masked_array(data=0,
|
|
mask=False,
|
|
fill_value=999999), masked_array(data=2,
|
|
mask=False,
|
|
fill_value=999999)), mean=np.float64(1.0),
|
|
variance=np.float64(0.6666666666666666),
|
|
skewness=masked_array(data=0., mask=False, fill_value=1e+20),
|
|
kurtosis=np.float64(-1.5))
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
n = a.count(axis)
|
|
mm = (ma.minimum.reduce(a, axis=axis), ma.maximum.reduce(a, axis=axis))
|
|
m = a.mean(axis)
|
|
v = a.var(axis, ddof=ddof)
|
|
sk = skew(a, axis, bias=bias)
|
|
kurt = kurtosis(a, axis, bias=bias)
|
|
|
|
return DescribeResult(n, mm, m, v, sk, kurt)
|
|
|
|
|
|
def stde_median(data, axis=None):
|
|
"""Returns the McKean-Schrader estimate of the standard error of the sample
|
|
median along the given axis. masked values are discarded.
|
|
|
|
Parameters
|
|
----------
|
|
data : ndarray
|
|
Data to trim.
|
|
axis : {None,int}, optional
|
|
Axis along which to perform the trimming.
|
|
If None, the input array is first flattened.
|
|
|
|
"""
|
|
def _stdemed_1D(data):
|
|
data = np.sort(data.compressed())
|
|
n = len(data)
|
|
z = 2.5758293035489004
|
|
k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
|
|
return ((data[n-k] - data[k-1])/(2.*z))
|
|
|
|
data = ma.array(data, copy=False, subok=True)
|
|
if (axis is None):
|
|
return _stdemed_1D(data)
|
|
else:
|
|
if data.ndim > 2:
|
|
raise ValueError("Array 'data' must be at most two dimensional, "
|
|
"but got data.ndim = %d" % data.ndim)
|
|
return ma.apply_along_axis(_stdemed_1D, axis, data)
|
|
|
|
|
|
SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def skewtest(a, axis=0, alternative='two-sided'):
|
|
"""
|
|
Tests whether the skew is different from the normal distribution.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
The data to be tested
|
|
axis : int or None, optional
|
|
Axis along which statistics are calculated. Default is 0.
|
|
If None, compute over the whole array `a`.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis. Default is 'two-sided'.
|
|
The following options are available:
|
|
|
|
* 'two-sided': the skewness of the distribution underlying the sample
|
|
is different from that of the normal distribution (i.e. 0)
|
|
* 'less': the skewness of the distribution underlying the sample
|
|
is less than that of the normal distribution
|
|
* 'greater': the skewness of the distribution underlying the sample
|
|
is greater than that of the normal distribution
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
statistic : array_like
|
|
The computed z-score for this test.
|
|
pvalue : array_like
|
|
A p-value for the hypothesis test
|
|
|
|
Notes
|
|
-----
|
|
For more details about `skewtest`, see `scipy.stats.skewtest`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
if axis is None:
|
|
a = a.ravel()
|
|
axis = 0
|
|
b2 = skew(a,axis)
|
|
n = a.count(axis)
|
|
if np.min(n) < 8:
|
|
raise ValueError(
|
|
"skewtest is not valid with less than 8 samples; %i samples"
|
|
" were given." % np.min(n))
|
|
|
|
y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)))
|
|
beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9))
|
|
W2 = -1 + ma.sqrt(2*(beta2-1))
|
|
delta = 1/ma.sqrt(0.5*ma.log(W2))
|
|
alpha = ma.sqrt(2.0/(W2-1))
|
|
y = ma.where(y == 0, 1, y)
|
|
Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
|
|
pvalue = scipy.stats._stats_py._get_pvalue(Z, distributions.norm, alternative)
|
|
|
|
return SkewtestResult(Z[()], pvalue[()])
|
|
|
|
|
|
KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def kurtosistest(a, axis=0, alternative='two-sided'):
|
|
"""
|
|
Tests whether a dataset has normal kurtosis
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
array of the sample data
|
|
axis : int or None, optional
|
|
Axis along which to compute test. Default is 0. If None,
|
|
compute over the whole array `a`.
|
|
alternative : {'two-sided', 'less', 'greater'}, optional
|
|
Defines the alternative hypothesis.
|
|
The following options are available (default is 'two-sided'):
|
|
|
|
* 'two-sided': the kurtosis of the distribution underlying the sample
|
|
is different from that of the normal distribution
|
|
* 'less': the kurtosis of the distribution underlying the sample
|
|
is less than that of the normal distribution
|
|
* 'greater': the kurtosis of the distribution underlying the sample
|
|
is greater than that of the normal distribution
|
|
|
|
.. versionadded:: 1.7.0
|
|
|
|
Returns
|
|
-------
|
|
statistic : array_like
|
|
The computed z-score for this test.
|
|
pvalue : array_like
|
|
The p-value for the hypothesis test
|
|
|
|
Notes
|
|
-----
|
|
For more details about `kurtosistest`, see `scipy.stats.kurtosistest`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
n = a.count(axis=axis)
|
|
if np.min(n) < 5:
|
|
raise ValueError(
|
|
"kurtosistest requires at least 5 observations; %i observations"
|
|
" were given." % np.min(n))
|
|
if np.min(n) < 20:
|
|
warnings.warn(
|
|
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n),
|
|
stacklevel=2,
|
|
)
|
|
|
|
b2 = kurtosis(a, axis, fisher=False)
|
|
E = 3.0*(n-1) / (n+1)
|
|
varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))
|
|
x = (b2-E)/ma.sqrt(varb2)
|
|
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
|
|
(n*(n-2)*(n-3)))
|
|
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
|
|
term1 = 1 - 2./(9.0*A)
|
|
denom = 1 + x*ma.sqrt(2/(A-4.0))
|
|
if np.ma.isMaskedArray(denom):
|
|
# For multi-dimensional array input
|
|
denom[denom == 0.0] = masked
|
|
elif denom == 0.0:
|
|
denom = masked
|
|
|
|
term2 = np.ma.where(denom > 0, ma.power((1-2.0/A)/denom, 1/3.0),
|
|
-ma.power(-(1-2.0/A)/denom, 1/3.0))
|
|
Z = (term1 - term2) / np.sqrt(2/(9.0*A))
|
|
pvalue = scipy.stats._stats_py._get_pvalue(Z, distributions.norm, alternative)
|
|
|
|
return KurtosistestResult(Z[()], pvalue[()])
|
|
|
|
|
|
NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def normaltest(a, axis=0):
|
|
"""
|
|
Tests whether a sample differs from a normal distribution.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
The array containing the data to be tested.
|
|
axis : int or None, optional
|
|
Axis along which to compute test. Default is 0. If None,
|
|
compute over the whole array `a`.
|
|
|
|
Returns
|
|
-------
|
|
statistic : float or array
|
|
``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
|
|
``k`` is the z-score returned by `kurtosistest`.
|
|
pvalue : float or array
|
|
A 2-sided chi squared probability for the hypothesis test.
|
|
|
|
Notes
|
|
-----
|
|
For more details about `normaltest`, see `scipy.stats.normaltest`.
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
s, _ = skewtest(a, axis)
|
|
k, _ = kurtosistest(a, axis)
|
|
k2 = s*s + k*k
|
|
|
|
return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
|
|
|
|
|
|
def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None,
|
|
limit=()):
|
|
"""
|
|
Computes empirical quantiles for a data array.
|
|
|
|
Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``,
|
|
where ``x[j]`` is the j-th order statistic, and gamma is a function of
|
|
``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and
|
|
``g = n*p + m - j``.
|
|
|
|
Reinterpreting the above equations to compare to **R** lead to the
|
|
equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)``
|
|
|
|
Typical values of (alphap,betap) are:
|
|
- (0,1) : ``p(k) = k/n`` : linear interpolation of cdf
|
|
(**R** type 4)
|
|
- (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function
|
|
(**R** type 5)
|
|
- (0,0) : ``p(k) = k/(n+1)`` :
|
|
(**R** type 6)
|
|
- (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])].
|
|
(**R** type 7, **R** default)
|
|
- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])].
|
|
The resulting quantile estimates are approximately median-unbiased
|
|
regardless of the distribution of x.
|
|
(**R** type 8)
|
|
- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom.
|
|
The resulting quantile estimates are approximately unbiased
|
|
if x is normally distributed
|
|
(**R** type 9)
|
|
- (.4,.4) : approximately quantile unbiased (Cunnane)
|
|
- (.35,.35): APL, used with PWM
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Input data, as a sequence or array of dimension at most 2.
|
|
prob : array_like, optional
|
|
List of quantiles to compute.
|
|
alphap : float, optional
|
|
Plotting positions parameter, default is 0.4.
|
|
betap : float, optional
|
|
Plotting positions parameter, default is 0.4.
|
|
axis : int, optional
|
|
Axis along which to perform the trimming.
|
|
If None (default), the input array is first flattened.
|
|
limit : tuple, optional
|
|
Tuple of (lower, upper) values.
|
|
Values of `a` outside this open interval are ignored.
|
|
|
|
Returns
|
|
-------
|
|
mquantiles : MaskedArray
|
|
An array containing the calculated quantiles.
|
|
|
|
Notes
|
|
-----
|
|
This formulation is very similar to **R** except the calculation of
|
|
``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined
|
|
with each type.
|
|
|
|
References
|
|
----------
|
|
.. [1] *R* statistical software: https://www.r-project.org/
|
|
.. [2] *R* ``quantile`` function:
|
|
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> from scipy.stats.mstats import mquantiles
|
|
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
|
|
>>> mquantiles(a)
|
|
array([ 19.2, 40. , 42.8])
|
|
|
|
Using a 2D array, specifying axis and limit.
|
|
|
|
>>> data = np.array([[ 6., 7., 1.],
|
|
... [ 47., 15., 2.],
|
|
... [ 49., 36., 3.],
|
|
... [ 15., 39., 4.],
|
|
... [ 42., 40., -999.],
|
|
... [ 41., 41., -999.],
|
|
... [ 7., -999., -999.],
|
|
... [ 39., -999., -999.],
|
|
... [ 43., -999., -999.],
|
|
... [ 40., -999., -999.],
|
|
... [ 36., -999., -999.]])
|
|
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
|
|
[[19.2 14.6 1.45]
|
|
[40. 37.5 2.5 ]
|
|
[42.8 40.05 3.55]]
|
|
|
|
>>> data[:, 2] = -999.
|
|
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
|
|
[[19.200000000000003 14.6 --]
|
|
[40.0 37.5 --]
|
|
[42.800000000000004 40.05 --]]
|
|
|
|
"""
|
|
def _quantiles1D(data,m,p):
|
|
x = np.sort(data.compressed())
|
|
n = len(x)
|
|
if n == 0:
|
|
return ma.array(np.empty(len(p), dtype=float), mask=True)
|
|
elif n == 1:
|
|
return ma.array(np.resize(x, p.shape), mask=nomask)
|
|
aleph = (n*p + m)
|
|
k = np.floor(aleph.clip(1, n-1)).astype(int)
|
|
gamma = (aleph-k).clip(0,1)
|
|
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
|
|
|
|
data = ma.array(a, copy=False)
|
|
if data.ndim > 2:
|
|
raise TypeError("Array should be 2D at most !")
|
|
|
|
if limit:
|
|
condition = (limit[0] < data) & (data < limit[1])
|
|
data[~condition.filled(True)] = masked
|
|
|
|
p = np.atleast_1d(np.asarray(prob))
|
|
m = alphap + p*(1.-alphap-betap)
|
|
# Computes quantiles along axis (or globally)
|
|
if (axis is None):
|
|
return _quantiles1D(data, m, p)
|
|
|
|
return ma.apply_along_axis(_quantiles1D, axis, data, m, p)
|
|
|
|
|
|
def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
|
|
"""Calculate the score at the given 'per' percentile of the
|
|
sequence a. For example, the score at per=50 is the median.
|
|
|
|
This function is a shortcut to mquantile
|
|
|
|
"""
|
|
if (per < 0) or (per > 100.):
|
|
raise ValueError("The percentile should be between 0. and 100. !"
|
|
" (got %s)" % per)
|
|
|
|
return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
|
|
limit=limit, axis=0).squeeze()
|
|
|
|
|
|
def plotting_positions(data, alpha=0.4, beta=0.4):
|
|
"""
|
|
Returns plotting positions (or empirical percentile points) for the data.
|
|
|
|
Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where:
|
|
- i is the rank order statistics
|
|
- n is the number of unmasked values along the given axis
|
|
- `alpha` and `beta` are two parameters.
|
|
|
|
Typical values for `alpha` and `beta` are:
|
|
- (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4)
|
|
- (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function
|
|
(R, type 5)
|
|
- (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6)
|
|
- (1,1) : ``p(k) = (k-1)/(n-1)``, in this case,
|
|
``p(k) = mode[F(x[k])]``. That's R default (R type 7)
|
|
- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then
|
|
``p(k) ~ median[F(x[k])]``.
|
|
The resulting quantile estimates are approximately median-unbiased
|
|
regardless of the distribution of x. (R type 8)
|
|
- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom.
|
|
The resulting quantile estimates are approximately unbiased
|
|
if x is normally distributed (R type 9)
|
|
- (.4,.4) : approximately quantile unbiased (Cunnane)
|
|
- (.35,.35): APL, used with PWM
|
|
- (.3175, .3175): used in scipy.stats.probplot
|
|
|
|
Parameters
|
|
----------
|
|
data : array_like
|
|
Input data, as a sequence or array of dimension at most 2.
|
|
alpha : float, optional
|
|
Plotting positions parameter. Default is 0.4.
|
|
beta : float, optional
|
|
Plotting positions parameter. Default is 0.4.
|
|
|
|
Returns
|
|
-------
|
|
positions : MaskedArray
|
|
The calculated plotting positions.
|
|
|
|
"""
|
|
data = ma.array(data, copy=False).reshape(1,-1)
|
|
n = data.count()
|
|
plpos = np.empty(data.size, dtype=float)
|
|
plpos[n:] = 0
|
|
plpos[data.argsort(axis=None)[:n]] = ((np.arange(1, n+1) - alpha) /
|
|
(n + 1.0 - alpha - beta))
|
|
return ma.array(plpos, mask=data._mask)
|
|
|
|
|
|
meppf = plotting_positions
|
|
|
|
|
|
def obrientransform(*args):
|
|
"""
|
|
Computes a transform on input data (any number of columns). Used to
|
|
test for homogeneity of variance prior to running one-way stats. Each
|
|
array in ``*args`` is one level of a factor. If an `f_oneway()` run on
|
|
the transformed data and found significant, variances are unequal. From
|
|
Maxwell and Delaney, p.112.
|
|
|
|
Returns: transformed data for use in an ANOVA
|
|
"""
|
|
data = argstoarray(*args).T
|
|
v = data.var(axis=0,ddof=1)
|
|
m = data.mean(0)
|
|
n = data.count(0).astype(float)
|
|
# result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
|
|
data -= m
|
|
data **= 2
|
|
data *= (n-1.5)*n
|
|
data -= 0.5*v*(n-1)
|
|
data /= (n-1.)*(n-2.)
|
|
if not ma.allclose(v,data.mean(0)):
|
|
raise ValueError("Lack of convergence in obrientransform.")
|
|
|
|
return data
|
|
|
|
|
|
def sem(a, axis=0, ddof=1):
|
|
"""
|
|
Calculates the standard error of the mean of the input array.
|
|
|
|
Also sometimes called standard error of measurement.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
An array containing the values for which the standard error is
|
|
returned.
|
|
axis : int or None, optional
|
|
If axis is None, ravel `a` first. If axis is an integer, this will be
|
|
the axis over which to operate. Defaults to 0.
|
|
ddof : int, optional
|
|
Delta degrees-of-freedom. How many degrees of freedom to adjust
|
|
for bias in limited samples relative to the population estimate
|
|
of variance. Defaults to 1.
|
|
|
|
Returns
|
|
-------
|
|
s : ndarray or float
|
|
The standard error of the mean in the sample(s), along the input axis.
|
|
|
|
Notes
|
|
-----
|
|
The default value for `ddof` changed in scipy 0.15.0 to be consistent with
|
|
`scipy.stats.sem` as well as with the most common definition used (like in
|
|
the R documentation).
|
|
|
|
Examples
|
|
--------
|
|
Find standard error along the first axis:
|
|
|
|
>>> import numpy as np
|
|
>>> from scipy import stats
|
|
>>> a = np.arange(20).reshape(5,4)
|
|
>>> print(stats.mstats.sem(a))
|
|
[2.8284271247461903 2.8284271247461903 2.8284271247461903
|
|
2.8284271247461903]
|
|
|
|
Find standard error across the whole array, using n degrees of freedom:
|
|
|
|
>>> print(stats.mstats.sem(a, axis=None, ddof=0))
|
|
1.2893796958227628
|
|
|
|
"""
|
|
a, axis = _chk_asarray(a, axis)
|
|
n = a.count(axis=axis)
|
|
s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n)
|
|
return s
|
|
|
|
|
|
F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def f_oneway(*args):
|
|
"""
|
|
Performs a 1-way ANOVA, returning an F-value and probability given
|
|
any number of groups. From Heiman, pp.394-7.
|
|
|
|
Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays,
|
|
one per treatment group.
|
|
|
|
Returns
|
|
-------
|
|
statistic : float
|
|
The computed F-value of the test.
|
|
pvalue : float
|
|
The associated p-value from the F-distribution.
|
|
|
|
"""
|
|
# Construct a single array of arguments: each row is a group
|
|
data = argstoarray(*args)
|
|
ngroups = len(data)
|
|
ntot = data.count()
|
|
sstot = (data**2).sum() - (data.sum())**2/float(ntot)
|
|
ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
|
|
sswg = sstot-ssbg
|
|
dfbg = ngroups-1
|
|
dfwg = ntot - ngroups
|
|
msb = ssbg/float(dfbg)
|
|
msw = sswg/float(dfwg)
|
|
f = msb/msw
|
|
prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf
|
|
|
|
return F_onewayResult(f, prob)
|
|
|
|
|
|
FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
|
|
('statistic', 'pvalue'))
|
|
|
|
|
|
def friedmanchisquare(*args):
|
|
"""Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
|
|
This function calculates the Friedman Chi-square test for repeated measures
|
|
and returns the result, along with the associated probability value.
|
|
|
|
Each input is considered a given group. Ideally, the number of treatments
|
|
among each group should be equal. If this is not the case, only the first
|
|
n treatments are taken into account, where n is the number of treatments
|
|
of the smallest group.
|
|
If a group has some missing values, the corresponding treatments are masked
|
|
in the other groups.
|
|
The test statistic is corrected for ties.
|
|
|
|
Masked values in one group are propagated to the other groups.
|
|
|
|
Returns
|
|
-------
|
|
statistic : float
|
|
the test statistic.
|
|
pvalue : float
|
|
the associated p-value.
|
|
|
|
"""
|
|
data = argstoarray(*args).astype(float)
|
|
k = len(data)
|
|
if k < 3:
|
|
raise ValueError("Less than 3 groups (%i): " % k +
|
|
"the Friedman test is NOT appropriate.")
|
|
|
|
ranked = ma.masked_values(rankdata(data, axis=0), 0)
|
|
if ranked._mask is not nomask:
|
|
ranked = ma.mask_cols(ranked)
|
|
ranked = ranked.compressed().reshape(k,-1).view(ndarray)
|
|
else:
|
|
ranked = ranked._data
|
|
(k,n) = ranked.shape
|
|
# Ties correction
|
|
repeats = [find_repeats(row) for row in ranked.T]
|
|
ties = np.array([y for x, y in repeats if x.size > 0])
|
|
tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))
|
|
|
|
ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
|
|
chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction
|
|
|
|
return FriedmanchisquareResult(chisq,
|
|
distributions.chi2.sf(chisq, k-1))
|
|
|
|
|
|
BrunnerMunzelResult = namedtuple('BrunnerMunzelResult', ('statistic', 'pvalue'))
|
|
|
|
|
|
def brunnermunzel(x, y, alternative="two-sided", distribution="t"):
|
|
"""
|
|
Compute the Brunner-Munzel test on samples x and y.
|
|
|
|
Any missing values in `x` and/or `y` are discarded.
|
|
|
|
The Brunner-Munzel test is a nonparametric test of the null hypothesis that
|
|
when values are taken one by one from each group, the probabilities of
|
|
getting large values in both groups are equal.
|
|
Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
|
|
assumption of equivariance of two groups. Note that this does not assume
|
|
the distributions are same. This test works on two independent samples,
|
|
which may have different sizes.
|
|
|
|
Parameters
|
|
----------
|
|
x, y : array_like
|
|
Array of samples, should be one-dimensional.
|
|
alternative : 'less', 'two-sided', or 'greater', optional
|
|
Whether to get the p-value for the one-sided hypothesis ('less'
|
|
or 'greater') or for the two-sided hypothesis ('two-sided').
|
|
Defaults value is 'two-sided' .
|
|
distribution : 't' or 'normal', optional
|
|
Whether to get the p-value by t-distribution or by standard normal
|
|
distribution.
|
|
Defaults value is 't' .
|
|
|
|
Returns
|
|
-------
|
|
statistic : float
|
|
The Brunner-Munzer W statistic.
|
|
pvalue : float
|
|
p-value assuming an t distribution. One-sided or
|
|
two-sided, depending on the choice of `alternative` and `distribution`.
|
|
|
|
See Also
|
|
--------
|
|
mannwhitneyu : Mann-Whitney rank test on two samples.
|
|
|
|
Notes
|
|
-----
|
|
For more details on `brunnermunzel`, see `scipy.stats.brunnermunzel`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.stats.mstats import brunnermunzel
|
|
>>> import numpy as np
|
|
>>> x1 = [1, 2, np.nan, np.nan, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1]
|
|
>>> x2 = [3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4]
|
|
>>> brunnermunzel(x1, x2)
|
|
BrunnerMunzelResult(statistic=1.4723186918922935, pvalue=0.15479415300426624) # may vary
|
|
|
|
""" # noqa: E501
|
|
x = ma.asarray(x).compressed().view(ndarray)
|
|
y = ma.asarray(y).compressed().view(ndarray)
|
|
nx = len(x)
|
|
ny = len(y)
|
|
if nx == 0 or ny == 0:
|
|
return BrunnerMunzelResult(np.nan, np.nan)
|
|
rankc = rankdata(np.concatenate((x,y)))
|
|
rankcx = rankc[0:nx]
|
|
rankcy = rankc[nx:nx+ny]
|
|
rankcx_mean = np.mean(rankcx)
|
|
rankcy_mean = np.mean(rankcy)
|
|
rankx = rankdata(x)
|
|
ranky = rankdata(y)
|
|
rankx_mean = np.mean(rankx)
|
|
ranky_mean = np.mean(ranky)
|
|
|
|
Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
|
|
Sx /= nx - 1
|
|
Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
|
|
Sy /= ny - 1
|
|
|
|
wbfn = nx * ny * (rankcy_mean - rankcx_mean)
|
|
wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
|
|
|
|
if distribution == "t":
|
|
df_numer = np.power(nx * Sx + ny * Sy, 2.0)
|
|
df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
|
|
df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
|
|
df = df_numer / df_denom
|
|
p = distributions.t.cdf(wbfn, df)
|
|
elif distribution == "normal":
|
|
p = distributions.norm.cdf(wbfn)
|
|
else:
|
|
raise ValueError(
|
|
"distribution should be 't' or 'normal'")
|
|
|
|
if alternative == "greater":
|
|
pass
|
|
elif alternative == "less":
|
|
p = 1 - p
|
|
elif alternative == "two-sided":
|
|
p = 2 * np.min([p, 1-p])
|
|
else:
|
|
raise ValueError(
|
|
"alternative should be 'less', 'greater' or 'two-sided'")
|
|
|
|
return BrunnerMunzelResult(wbfn, p)
|