AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/sparse/_spfuncs.py
2024-10-02 22:15:59 +04:00

77 lines
1.9 KiB
Python

""" Functions that operate on sparse matrices
"""
__all__ = ['count_blocks','estimate_blocksize']
from ._base import issparse
from ._csr import csr_array
from ._sparsetools import csr_count_blocks
def estimate_blocksize(A,efficiency=0.7):
"""Attempt to determine the blocksize of a sparse matrix
Returns a blocksize=(r,c) such that
- A.nnz / A.tobsr( (r,c) ).nnz > efficiency
"""
if not (issparse(A) and A.format in ("csc", "csr")):
A = csr_array(A)
if A.nnz == 0:
return (1,1)
if not 0 < efficiency < 1.0:
raise ValueError('efficiency must satisfy 0.0 < efficiency < 1.0')
high_efficiency = (1.0 + efficiency) / 2.0
nnz = float(A.nnz)
M,N = A.shape
if M % 2 == 0 and N % 2 == 0:
e22 = nnz / (4 * count_blocks(A,(2,2)))
else:
e22 = 0.0
if M % 3 == 0 and N % 3 == 0:
e33 = nnz / (9 * count_blocks(A,(3,3)))
else:
e33 = 0.0
if e22 > high_efficiency and e33 > high_efficiency:
e66 = nnz / (36 * count_blocks(A,(6,6)))
if e66 > efficiency:
return (6,6)
else:
return (3,3)
else:
if M % 4 == 0 and N % 4 == 0:
e44 = nnz / (16 * count_blocks(A,(4,4)))
else:
e44 = 0.0
if e44 > efficiency:
return (4,4)
elif e33 > efficiency:
return (3,3)
elif e22 > efficiency:
return (2,2)
else:
return (1,1)
def count_blocks(A,blocksize):
"""For a given blocksize=(r,c) count the number of occupied
blocks in a sparse matrix A
"""
r,c = blocksize
if r < 1 or c < 1:
raise ValueError('r and c must be positive')
if issparse(A):
if A.format == "csr":
M,N = A.shape
return csr_count_blocks(M,N,r,c,A.indptr,A.indices)
elif A.format == "csc":
return count_blocks(A.T,(c,r))
return count_blocks(csr_array(A),blocksize)