AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/sparse/_csr.py
2024-10-02 22:15:59 +04:00

552 lines
18 KiB
Python

"""Compressed Sparse Row matrix format"""
__docformat__ = "restructuredtext en"
__all__ = ['csr_array', 'csr_matrix', 'isspmatrix_csr']
import numpy as np
from ._matrix import spmatrix
from ._base import _spbase, sparray
from ._sparsetools import (csr_tocsc, csr_tobsr, csr_count_blocks,
get_csr_submatrix)
from ._sputils import upcast
from ._compressed import _cs_matrix
class _csr_base(_cs_matrix):
_format = 'csr'
# override IndexMixin.__getitem__ for 1d case until fully implemented
def __getitem__(self, key):
if self.ndim == 2:
return super().__getitem__(key)
if isinstance(key, tuple) and len(key) == 1:
key = key[0]
INT_TYPES = (int, np.integer)
if isinstance(key, INT_TYPES):
if key < 0:
key += self.shape[-1]
if key < 0 or key >= self.shape[-1]:
raise IndexError('index value out of bounds')
return self._get_int(key)
else:
raise IndexError('array/slice index for 1d csr_array not yet supported')
# override IndexMixin.__setitem__ for 1d case until fully implemented
def __setitem__(self, key, value):
if self.ndim == 2:
return super().__setitem__(key, value)
if isinstance(key, tuple) and len(key) == 1:
key = key[0]
INT_TYPES = (int, np.integer)
if isinstance(key, INT_TYPES):
if key < 0:
key += self.shape[-1]
if key < 0 or key >= self.shape[-1]:
raise IndexError('index value out of bounds')
return self._set_int(key, value)
else:
raise IndexError('array index for 1d csr_array not yet provided')
def transpose(self, axes=None, copy=False):
if axes is not None and axes != (1, 0):
raise ValueError("Sparse arrays/matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation.")
if self.ndim == 1:
return self.copy() if copy else self
M, N = self.shape
return self._csc_container((self.data, self.indices,
self.indptr), shape=(N, M), copy=copy)
transpose.__doc__ = _spbase.transpose.__doc__
def tolil(self, copy=False):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to lil format")
lil = self._lil_container(self.shape, dtype=self.dtype)
self.sum_duplicates()
ptr,ind,dat = self.indptr,self.indices,self.data
rows, data = lil.rows, lil.data
for n in range(self.shape[0]):
start = ptr[n]
end = ptr[n+1]
rows[n] = ind[start:end].tolist()
data[n] = dat[start:end].tolist()
return lil
tolil.__doc__ = _spbase.tolil.__doc__
def tocsr(self, copy=False):
if copy:
return self.copy()
else:
return self
tocsr.__doc__ = _spbase.tocsr.__doc__
def tocsc(self, copy=False):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to csc format")
M, N = self.shape
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
maxval=max(self.nnz, M))
indptr = np.empty(N + 1, dtype=idx_dtype)
indices = np.empty(self.nnz, dtype=idx_dtype)
data = np.empty(self.nnz, dtype=upcast(self.dtype))
csr_tocsc(M, N,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
indptr,
indices,
data)
A = self._csc_container((data, indices, indptr), shape=self.shape)
A.has_sorted_indices = True
return A
tocsc.__doc__ = _spbase.tocsc.__doc__
def tobsr(self, blocksize=None, copy=True):
if self.ndim != 2:
raise ValueError("Cannot convert a 1d sparse array to bsr format")
if blocksize is None:
from ._spfuncs import estimate_blocksize
return self.tobsr(blocksize=estimate_blocksize(self))
elif blocksize == (1,1):
arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr)
return self._bsr_container(arg1, shape=self.shape, copy=copy)
else:
R,C = blocksize
M,N = self.shape
if R < 1 or C < 1 or M % R != 0 or N % C != 0:
raise ValueError('invalid blocksize %s' % blocksize)
blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices)
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
maxval=max(N//C, blks))
indptr = np.empty(M//R+1, dtype=idx_dtype)
indices = np.empty(blks, dtype=idx_dtype)
data = np.zeros((blks,R,C), dtype=self.dtype)
csr_tobsr(M, N, R, C,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
indptr, indices, data.ravel())
return self._bsr_container(
(data, indices, indptr), shape=self.shape
)
tobsr.__doc__ = _spbase.tobsr.__doc__
# these functions are used by the parent class (_cs_matrix)
# to remove redundancy between csc_matrix and csr_array
@staticmethod
def _swap(x):
"""swap the members of x if this is a column-oriented matrix
"""
return x
def __iter__(self):
if self.ndim == 1:
zero = self.dtype.type(0)
u = 0
for v, d in zip(self.indices, self.data):
for _ in range(v - u):
yield zero
yield d
u = v + 1
for _ in range(self.shape[0] - u):
yield zero
return
indptr = np.zeros(2, dtype=self.indptr.dtype)
# return 1d (sparray) or 2drow (spmatrix)
shape = self.shape[1:] if isinstance(self, sparray) else (1, self.shape[1])
i0 = 0
for i1 in self.indptr[1:]:
indptr[1] = i1 - i0
indices = self.indices[i0:i1]
data = self.data[i0:i1]
yield self.__class__((data, indices, indptr), shape=shape, copy=True)
i0 = i1
def _getrow(self, i):
"""Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).
"""
if self.ndim == 1:
if i not in (0, -1):
raise IndexError(f'index ({i}) out of range')
return self.reshape((1, self.shape[0]), copy=True)
M, N = self.shape
i = int(i)
if i < 0:
i += M
if i < 0 or i >= M:
raise IndexError('index (%d) out of range' % i)
indptr, indices, data = get_csr_submatrix(
M, N, self.indptr, self.indices, self.data, i, i + 1, 0, N)
return self.__class__((data, indices, indptr), shape=(1, N),
dtype=self.dtype, copy=False)
def _getcol(self, i):
"""Returns a copy of column i. A (m x 1) sparse array (column vector).
"""
if self.ndim == 1:
raise ValueError("getcol not provided for 1d arrays. Use indexing A[j]")
M, N = self.shape
i = int(i)
if i < 0:
i += N
if i < 0 or i >= N:
raise IndexError('index (%d) out of range' % i)
indptr, indices, data = get_csr_submatrix(
M, N, self.indptr, self.indices, self.data, 0, M, i, i + 1)
return self.__class__((data, indices, indptr), shape=(M, 1),
dtype=self.dtype, copy=False)
def _get_intXarray(self, row, col):
return self._getrow(row)._minor_index_fancy(col)
def _get_intXslice(self, row, col):
if col.step in (1, None):
return self._get_submatrix(row, col, copy=True)
# TODO: uncomment this once it's faster:
# return self._getrow(row)._minor_slice(col)
M, N = self.shape
start, stop, stride = col.indices(N)
ii, jj = self.indptr[row:row+2]
row_indices = self.indices[ii:jj]
row_data = self.data[ii:jj]
if stride > 0:
ind = (row_indices >= start) & (row_indices < stop)
else:
ind = (row_indices <= start) & (row_indices > stop)
if abs(stride) > 1:
ind &= (row_indices - start) % stride == 0
row_indices = (row_indices[ind] - start) // stride
row_data = row_data[ind]
row_indptr = np.array([0, len(row_indices)])
if stride < 0:
row_data = row_data[::-1]
row_indices = abs(row_indices[::-1])
shape = (1, max(0, int(np.ceil(float(stop - start) / stride))))
return self.__class__((row_data, row_indices, row_indptr), shape=shape,
dtype=self.dtype, copy=False)
def _get_sliceXint(self, row, col):
if row.step in (1, None):
return self._get_submatrix(row, col, copy=True)
return self._major_slice(row)._get_submatrix(minor=col)
def _get_sliceXarray(self, row, col):
return self._major_slice(row)._minor_index_fancy(col)
def _get_arrayXint(self, row, col):
return self._major_index_fancy(row)._get_submatrix(minor=col)
def _get_arrayXslice(self, row, col):
if col.step not in (1, None):
col = np.arange(*col.indices(self.shape[1]))
return self._get_arrayXarray(row, col)
return self._major_index_fancy(row)._get_submatrix(minor=col)
def isspmatrix_csr(x):
"""Is `x` of csr_matrix type?
Parameters
----------
x
object to check for being a csr matrix
Returns
-------
bool
True if `x` is a csr matrix, False otherwise
Examples
--------
>>> from scipy.sparse import csr_array, csr_matrix, coo_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True
>>> isspmatrix_csr(csr_array([[5]]))
False
>>> isspmatrix_csr(coo_matrix([[5]]))
False
"""
return isinstance(x, csr_matrix)
# This namespace class separates array from matrix with isinstance
class csr_array(_csr_base, sparray):
"""
Compressed Sparse Row array.
This can be instantiated in several ways:
csr_array(D)
where D is a 2-D ndarray
csr_array(S)
with another sparse array or matrix S (equivalent to S.tocsr())
csr_array((M, N), [dtype])
to construct an empty array with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_array((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csr_array((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the array dimensions
are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the array
shape : 2-tuple
Shape of the array
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
CSR format data array of the array
indices
CSR format index array of the array
indptr
CSR format index pointer array of the array
has_sorted_indices
has_canonical_format
T
Notes
-----
Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Canonical Format
- Within each row, indices are sorted by column.
- There are no duplicate entries.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> csr_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_array((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
[0, 2, 0],
[0, 4, 0]])
As an example of how to construct a CSR array incrementally,
the following snippet builds a term-document array from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_array((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
"""
class csr_matrix(spmatrix, _csr_base):
"""
Compressed Sparse Row matrix.
This can be instantiated in several ways:
csr_matrix(D)
where D is a 2-D ndarray
csr_matrix(S)
with another sparse array or matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
CSR format data array of the matrix
indices
CSR format index array of the matrix
indptr
CSR format index pointer array of the matrix
has_sorted_indices
has_canonical_format
T
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Canonical Format
- Within each row, indices are sorted by column.
- There are no duplicate entries.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
[0, 2, 0],
[0, 4, 0]])
As an example of how to construct a CSR matrix incrementally,
the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
"""