AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/optimize/tests/test_cobyqa.py
2024-10-02 22:15:59 +04:00

247 lines
7.8 KiB
Python

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_equal
from scipy.optimize import (
Bounds,
LinearConstraint,
NonlinearConstraint,
OptimizeResult,
minimize,
)
class TestCOBYQA:
def setup_method(self):
self.x0 = [4.95, 0.66]
self.options = {'maxfev': 100}
@staticmethod
def fun(x, c=1.0):
return x[0]**2 + c * abs(x[1])**3
@staticmethod
def con(x):
return x[0]**2 + x[1]**2 - 25.0
def test_minimize_simple(self):
class Callback:
def __init__(self):
self.n_calls = 0
def __call__(self, x):
assert isinstance(x, np.ndarray)
self.n_calls += 1
class CallbackNewSyntax:
def __init__(self):
self.n_calls = 0
def __call__(self, intermediate_result):
assert isinstance(intermediate_result, OptimizeResult)
self.n_calls += 1
callback = Callback()
callback_new_syntax = CallbackNewSyntax()
# Minimize with method='cobyqa'.
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
callback=callback,
options=self.options,
)
sol_new = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
callback=callback_new_syntax,
options=self.options,
)
solution = [np.sqrt(25.0 - 4.0 / 9.0), 2.0 / 3.0]
assert_allclose(sol.x, solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert sol.nfev <= 100, sol
assert sol.fun < self.fun(solution) + 1e-3, sol
assert sol.nfev == callback.n_calls, \
"Callback is not called exactly once for every function eval."
assert_equal(sol.x, sol_new.x)
assert sol_new.success, sol_new.message
assert sol.fun == sol_new.fun
assert sol.maxcv == sol_new.maxcv
assert sol.nfev == sol_new.nfev
assert sol.nit == sol_new.nit
assert sol_new.nfev == callback_new_syntax.n_calls, \
"Callback is not called exactly once for every function eval."
def test_minimize_bounds(self):
def fun_check_bounds(x):
assert np.all(bounds.lb <= x) and np.all(x <= bounds.ub)
return self.fun(x)
# Case where the bounds are not active at the solution.
bounds = Bounds([4.5, 0.6], [5.0, 0.7])
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
sol = minimize(
fun_check_bounds,
self.x0,
method='cobyqa',
bounds=bounds,
constraints=constraints,
options=self.options,
)
solution = [np.sqrt(25.0 - 4.0 / 9.0), 2.0 / 3.0]
assert_allclose(sol.x, solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert np.all(bounds.lb <= sol.x) and np.all(sol.x <= bounds.ub), sol
assert sol.nfev <= 100, sol
assert sol.fun < self.fun(solution) + 1e-3, sol
# Case where the bounds are active at the solution.
bounds = Bounds([5.0, 0.6], [5.5, 0.65])
sol = minimize(
fun_check_bounds,
self.x0,
method='cobyqa',
bounds=bounds,
constraints=constraints,
options=self.options,
)
assert not sol.success, sol.message
assert sol.maxcv > 0.35, sol
assert np.all(bounds.lb <= sol.x) and np.all(sol.x <= bounds.ub), sol
assert sol.nfev <= 100, sol
def test_minimize_linear_constraints(self):
constraints = LinearConstraint([1.0, 1.0], 1.0, 1.0)
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
options=self.options,
)
solution = [(4 - np.sqrt(7)) / 3, (np.sqrt(7) - 1) / 3]
assert_allclose(sol.x, solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert sol.nfev <= 100, sol
assert sol.fun < self.fun(solution) + 1e-3, sol
def test_minimize_args(self):
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
sol = minimize(
self.fun,
self.x0,
args=(2.0,),
method='cobyqa',
constraints=constraints,
options=self.options,
)
solution = [np.sqrt(25.0 - 4.0 / 36.0), 2.0 / 6.0]
assert_allclose(sol.x, solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert sol.nfev <= 100, sol
assert sol.fun < self.fun(solution, 2.0) + 1e-3, sol
def test_minimize_array(self):
def fun_array(x, dim):
f = np.array(self.fun(x))
return np.reshape(f, (1,) * dim)
# The argument fun can return an array with a single element.
bounds = Bounds([4.5, 0.6], [5.0, 0.7])
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
bounds=bounds,
constraints=constraints,
options=self.options,
)
for dim in [0, 1, 2]:
sol_array = minimize(
fun_array,
self.x0,
args=(dim,),
method='cobyqa',
bounds=bounds,
constraints=constraints,
options=self.options,
)
assert_equal(sol.x, sol_array.x)
assert sol_array.success, sol_array.message
assert sol.fun == sol_array.fun
assert sol.maxcv == sol_array.maxcv
assert sol.nfev == sol_array.nfev
assert sol.nit == sol_array.nit
# The argument fun cannot return an array with more than one element.
with pytest.raises(TypeError):
minimize(
lambda x: np.array([self.fun(x), self.fun(x)]),
self.x0,
method='cobyqa',
bounds=bounds,
constraints=constraints,
options=self.options,
)
def test_minimize_maxfev(self):
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
options = {'maxfev': 2}
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
options=options,
)
assert not sol.success, sol.message
assert sol.nfev <= 2, sol
def test_minimize_maxiter(self):
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
options = {'maxiter': 2}
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
options=options,
)
assert not sol.success, sol.message
assert sol.nit <= 2, sol
def test_minimize_f_target(self):
constraints = NonlinearConstraint(self.con, 0.0, 0.0)
sol_ref = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
options=self.options,
)
options = dict(self.options)
options['f_target'] = sol_ref.fun
sol = minimize(
self.fun,
self.x0,
method='cobyqa',
constraints=constraints,
options=options,
)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert sol.nfev <= sol_ref.nfev, sol
assert sol.fun <= sol_ref.fun, sol