AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/optimize/_cobyqa_py.py
2024-10-02 22:15:59 +04:00

63 lines
2.5 KiB
Python

import numpy as np
from ._optimize import _check_unknown_options
def _minimize_cobyqa(fun, x0, args=(), bounds=None, constraints=(),
callback=None, disp=False, maxfev=None, maxiter=None,
f_target=-np.inf, feasibility_tol=1e-8,
initial_tr_radius=1.0, final_tr_radius=1e-6, scale=False,
**unknown_options):
"""
Minimize a scalar function of one or more variables using the
Constrained Optimization BY Quadratic Approximations (COBYQA) algorithm [1]_.
.. versionadded:: 1.14.0
Options
-------
disp : bool
Set to True to print information about the optimization procedure.
maxfev : int
Maximum number of function evaluations.
maxiter : int
Maximum number of iterations.
f_target : float
Target value for the objective function. The optimization procedure is
terminated when the objective function value of a feasible point (see
`feasibility_tol` below) is less than or equal to this target.
feasibility_tol : float
Absolute tolerance for the constraint violation.
initial_tr_radius : float
Initial trust-region radius. Typically, this value should be in the
order of one tenth of the greatest expected change to the variables.
final_tr_radius : float
Final trust-region radius. It should indicate the accuracy required in
the final values of the variables. If provided, this option overrides
the value of `tol` in the `minimize` function.
scale : bool
Set to True to scale the variables according to the bounds. If True and
if all the lower and upper bounds are finite, the variables are scaled
to be within the range :math:`[-1, 1]`. If any of the lower or upper
bounds is infinite, the variables are not scaled.
References
----------
.. [1] COBYQA
https://www.cobyqa.com/stable/
"""
from .._lib.cobyqa import minimize # import here to avoid circular imports
_check_unknown_options(unknown_options)
options = {
'disp': bool(disp),
'maxfev': int(maxfev) if maxfev is not None else 500 * len(x0),
'maxiter': int(maxiter) if maxiter is not None else 1000 * len(x0),
'target': float(f_target),
'feasibility_tol': float(feasibility_tol),
'radius_init': float(initial_tr_radius),
'radius_final': float(final_tr_radius),
'scale': bool(scale),
}
return minimize(fun, x0, args, bounds, constraints, callback, options)