AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/scipy/fft/_fftlog.py
2024-10-02 22:15:59 +04:00

224 lines
7.7 KiB
Python

"""Fast Hankel transforms using the FFTLog algorithm.
The implementation closely follows the Fortran code of Hamilton (2000).
added: 14/11/2020 Nicolas Tessore <n.tessore@ucl.ac.uk>
"""
from ._basic import _dispatch
from scipy._lib.uarray import Dispatchable
from ._fftlog_backend import fhtoffset
import numpy as np
__all__ = ['fht', 'ifht', 'fhtoffset']
@_dispatch
def fht(a, dln, mu, offset=0.0, bias=0.0):
r'''Compute the fast Hankel transform.
Computes the discrete Hankel transform of a logarithmically spaced periodic
sequence using the FFTLog algorithm [1]_, [2]_.
Parameters
----------
a : array_like (..., n)
Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.
dln : float
Uniform logarithmic spacing of the input array.
mu : float
Order of the Hankel transform, any positive or negative real number.
offset : float, optional
Offset of the uniform logarithmic spacing of the output array.
bias : float, optional
Exponent of power law bias, any positive or negative real number.
Returns
-------
A : array_like (..., n)
The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.
See Also
--------
ifht : The inverse of `fht`.
fhtoffset : Return an optimal offset for `fht`.
Notes
-----
This function computes a discrete version of the Hankel transform
.. math::
A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
:math:`\mu` may be any real number, positive or negative. Note that the
numerical Hankel transform uses an integrand of :math:`k \, dr`, while the
mathematical Hankel transform is commonly defined using :math:`r \, dr`.
The input array `a` is a periodic sequence of length :math:`n`, uniformly
logarithmically spaced with spacing `dln`,
.. math::
a_j = a(r_j) \;, \quad
r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]
centred about the point :math:`r_c`. Note that the central index
:math:`j_c = (n-1)/2` is half-integral if :math:`n` is even, so that
:math:`r_c` falls between two input elements. Similarly, the output
array `A` is a periodic sequence of length :math:`n`, also uniformly
logarithmically spaced with spacing `dln`
.. math::
A_j = A(k_j) \;, \quad
k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]
centred about the point :math:`k_c`.
The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
be chosen arbitrarily, but it would be usual to choose the product
:math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity. This can be
changed using the `offset` parameter, which controls the logarithmic offset
:math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
Choosing an optimal value for `offset` may reduce ringing of the discrete
Hankel transform.
If the `bias` parameter is nonzero, this function computes a discrete
version of the biased Hankel transform
.. math::
A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr
where :math:`q` is the value of `bias`, and a power law bias
:math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
Biasing the transform can help approximate the continuous transform of
:math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
close to a periodic sequence, in which case the resulting :math:`A(k)` will
be close to the continuous transform.
References
----------
.. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
.. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
Examples
--------
This example is the adapted version of ``fftlogtest.f`` which is provided
in [2]_. It evaluates the integral
.. math::
\int^\infty_0 r^{\mu+1} \exp(-r^2/2) J_\mu(k, r) k dr
= k^{\mu+1} \exp(-k^2/2) .
>>> import numpy as np
>>> from scipy import fft
>>> import matplotlib.pyplot as plt
Parameters for the transform.
>>> mu = 0.0 # Order mu of Bessel function
>>> r = np.logspace(-7, 1, 128) # Input evaluation points
>>> dln = np.log(r[1]/r[0]) # Step size
>>> offset = fft.fhtoffset(dln, initial=-6*np.log(10), mu=mu)
>>> k = np.exp(offset)/r[::-1] # Output evaluation points
Define the analytical function.
>>> def f(x, mu):
... """Analytical function: x^(mu+1) exp(-x^2/2)."""
... return x**(mu + 1)*np.exp(-x**2/2)
Evaluate the function at ``r`` and compute the corresponding values at
``k`` using FFTLog.
>>> a_r = f(r, mu)
>>> fht = fft.fht(a_r, dln, mu=mu, offset=offset)
For this example we can actually compute the analytical response (which in
this case is the same as the input function) for comparison and compute the
relative error.
>>> a_k = f(k, mu)
>>> rel_err = abs((fht-a_k)/a_k)
Plot the result.
>>> figargs = {'sharex': True, 'sharey': True, 'constrained_layout': True}
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), **figargs)
>>> ax1.set_title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
>>> ax1.loglog(r, a_r, 'k', lw=2)
>>> ax1.set_xlabel('r')
>>> ax2.set_title(r'$k^{\mu+1} \exp(-k^2/2)$')
>>> ax2.loglog(k, a_k, 'k', lw=2, label='Analytical')
>>> ax2.loglog(k, fht, 'C3--', lw=2, label='FFTLog')
>>> ax2.set_xlabel('k')
>>> ax2.legend(loc=3, framealpha=1)
>>> ax2.set_ylim([1e-10, 1e1])
>>> ax2b = ax2.twinx()
>>> ax2b.loglog(k, rel_err, 'C0', label='Rel. Error (-)')
>>> ax2b.set_ylabel('Rel. Error (-)', color='C0')
>>> ax2b.tick_params(axis='y', labelcolor='C0')
>>> ax2b.legend(loc=4, framealpha=1)
>>> ax2b.set_ylim([1e-9, 1e-3])
>>> plt.show()
'''
return (Dispatchable(a, np.ndarray),)
@_dispatch
def ifht(A, dln, mu, offset=0.0, bias=0.0):
r"""Compute the inverse fast Hankel transform.
Computes the discrete inverse Hankel transform of a logarithmically spaced
periodic sequence. This is the inverse operation to `fht`.
Parameters
----------
A : array_like (..., n)
Real periodic input array, uniformly logarithmically spaced. For
multidimensional input, the transform is performed over the last axis.
dln : float
Uniform logarithmic spacing of the input array.
mu : float
Order of the Hankel transform, any positive or negative real number.
offset : float, optional
Offset of the uniform logarithmic spacing of the output array.
bias : float, optional
Exponent of power law bias, any positive or negative real number.
Returns
-------
a : array_like (..., n)
The transformed output array, which is real, periodic, uniformly
logarithmically spaced, and of the same shape as the input array.
See Also
--------
fht : Definition of the fast Hankel transform.
fhtoffset : Return an optimal offset for `ifht`.
Notes
-----
This function computes a discrete version of the Hankel transform
.. math::
a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
:math:`\mu` may be any real number, positive or negative. Note that the
numerical inverse Hankel transform uses an integrand of :math:`r \, dk`, while the
mathematical inverse Hankel transform is commonly defined using :math:`k \, dk`.
See `fht` for further details.
"""
return (Dispatchable(A, np.ndarray),)