2024-10-02 22:15:59 +04:00

1489 lines
55 KiB
Python

import warnings
import numpy as np
from scipy.optimize import (
Bounds,
LinearConstraint,
NonlinearConstraint,
OptimizeResult,
)
from .framework import TrustRegion
from .problem import (
ObjectiveFunction,
BoundConstraints,
LinearConstraints,
NonlinearConstraints,
Problem,
)
from .utils import (
MaxEvalError,
TargetSuccess,
CallbackSuccess,
FeasibleSuccess,
exact_1d_array,
)
from .settings import (
ExitStatus,
Options,
Constants,
DEFAULT_OPTIONS,
DEFAULT_CONSTANTS,
PRINT_OPTIONS,
)
def minimize(
fun,
x0,
args=(),
bounds=None,
constraints=(),
callback=None,
options=None,
**kwargs,
):
r"""
Minimize a scalar function using the COBYQA method.
The Constrained Optimization BY Quadratic Approximations (COBYQA) method is
a derivative-free optimization method designed to solve general nonlinear
optimization problems. A complete description of COBYQA is given in [3]_.
Parameters
----------
fun : {callable, None}
Objective function to be minimized.
``fun(x, *args) -> float``
where ``x`` is an array with shape (n,) and `args` is a tuple. If `fun`
is ``None``, the objective function is assumed to be the zero function,
resulting in a feasibility problem.
x0 : array_like, shape (n,)
Initial guess.
args : tuple, optional
Extra arguments passed to the objective function.
bounds : {`scipy.optimize.Bounds`, array_like, shape (n, 2)}, optional
Bound constraints of the problem. It can be one of the cases below.
#. An instance of `scipy.optimize.Bounds`. For the time being, the
argument ``keep_feasible`` is disregarded, and all the constraints
are considered unrelaxable and will be enforced.
#. An array with shape (n, 2). The bound constraints for ``x[i]`` are
``bounds[i][0] <= x[i] <= bounds[i][1]``. Set ``bounds[i][0]`` to
:math:`-\infty` if there is no lower bound, and set ``bounds[i][1]``
to :math:`\infty` if there is no upper bound.
The COBYQA method always respect the bound constraints.
constraints : {Constraint, list}, optional
General constraints of the problem. It can be one of the cases below.
#. An instance of `scipy.optimize.LinearConstraint`. The argument
``keep_feasible`` is disregarded.
#. An instance of `scipy.optimize.NonlinearConstraint`. The arguments
``jac``, ``hess``, ``keep_feasible``, ``finite_diff_rel_step``, and
``finite_diff_jac_sparsity`` are disregarded.
#. A list, each of whose elements are described in the cases above.
callback : callable, optional
A callback executed at each objective function evaluation. The method
terminates if a ``StopIteration`` exception is raised by the callback
function. Its signature can be one of the following:
``callback(intermediate_result)``
where ``intermediate_result`` is a keyword parameter that contains an
instance of `scipy.optimize.OptimizeResult`, with attributes ``x``
and ``fun``, being the point at which the objective function is
evaluated and the value of the objective function, respectively. The
name of the parameter must be ``intermediate_result`` for the callback
to be passed an instance of `scipy.optimize.OptimizeResult`.
Alternatively, the callback function can have the signature:
``callback(xk)``
where ``xk`` is the point at which the objective function is evaluated.
Introspection is used to determine which of the signatures to invoke.
options : dict, optional
Options passed to the solver. Accepted keys are:
disp : bool, optional
Whether to print information about the optimization procedure.
maxfev : int, optional
Maximum number of function evaluations.
maxiter : int, optional
Maximum number of iterations.
target : float, optional
Target on the objective function value. The optimization
procedure is terminated when the objective function value of a
feasible point is less than or equal to this target.
feasibility_tol : float, optional
Tolerance on the constraint violation. If the maximum
constraint violation at a point is less than or equal to this
tolerance, the point is considered feasible.
radius_init : float, optional
Initial trust-region radius. Typically, this value should be in
the order of one tenth of the greatest expected change to `x0`.
radius_final : float, optional
Final trust-region radius. It should indicate the accuracy
required in the final values of the variables.
nb_points : int, optional
Number of interpolation points used to build the quadratic
models of the objective and constraint functions.
scale : bool, optional
Whether to scale the variables according to the bounds.
filter_size : int, optional
Maximum number of points in the filter. The filter is used to
select the best point returned by the optimization procedure.
store_history : bool, optional
Whether to store the history of the function evaluations.
history_size : int, optional
Maximum number of function evaluations to store in the history.
debug : bool, optional
Whether to perform additional checks during the optimization
procedure. This option should be used only for debugging
purposes and is highly discouraged to general users.
Other constants (from the keyword arguments) are described below. They
are not intended to be changed by general users. They should only be
changed by users with a deep understanding of the algorithm, who want
to experiment with different settings.
Returns
-------
`scipy.optimize.OptimizeResult`
Result of the optimization procedure, with the following fields:
message : str
Description of the cause of the termination.
success : bool
Whether the optimization procedure terminated successfully.
status : int
Termination status of the optimization procedure.
x : `numpy.ndarray`, shape (n,)
Solution point.
fun : float
Objective function value at the solution point.
maxcv : float
Maximum constraint violation at the solution point.
nfev : int
Number of function evaluations.
nit : int
Number of iterations.
If ``store_history`` is True, the result also has the following fields:
fun_history : `numpy.ndarray`, shape (nfev,)
History of the objective function values.
maxcv_history : `numpy.ndarray`, shape (nfev,)
History of the maximum constraint violations.
A description of the termination statuses is given below.
.. list-table::
:widths: 25 75
:header-rows: 1
* - Exit status
- Description
* - 0
- The lower bound for the trust-region radius has been reached.
* - 1
- The target objective function value has been reached.
* - 2
- All variables are fixed by the bound constraints.
* - 3
- The callback requested to stop the optimization procedure.
* - 4
- The feasibility problem received has been solved successfully.
* - 5
- The maximum number of function evaluations has been exceeded.
* - 6
- The maximum number of iterations has been exceeded.
* - -1
- The bound constraints are infeasible.
* - -2
- A linear algebra error occurred.
Other Parameters
----------------
decrease_radius_factor : float, optional
Factor by which the trust-region radius is reduced when the reduction
ratio is low or negative.
increase_radius_factor : float, optional
Factor by which the trust-region radius is increased when the reduction
ratio is large.
increase_radius_threshold : float, optional
Threshold that controls the increase of the trust-region radius when
the reduction ratio is large.
decrease_radius_threshold : float, optional
Threshold used to determine whether the trust-region radius should be
reduced to the resolution.
decrease_resolution_factor : float, optional
Factor by which the resolution is reduced when the current value is far
from its final value.
large_resolution_threshold : float, optional
Threshold used to determine whether the resolution is far from its
final value.
moderate_resolution_threshold : float, optional
Threshold used to determine whether the resolution is close to its
final value.
low_ratio : float, optional
Threshold used to determine whether the reduction ratio is low.
high_ratio : float, optional
Threshold used to determine whether the reduction ratio is high.
very_low_ratio : float, optional
Threshold used to determine whether the reduction ratio is very low.
This is used to determine whether the models should be reset.
penalty_increase_threshold : float, optional
Threshold used to determine whether the penalty parameter should be
increased.
penalty_increase_factor : float, optional
Factor by which the penalty parameter is increased.
short_step_threshold : float, optional
Factor used to determine whether the trial step is too short.
low_radius_factor : float, optional
Factor used to determine which interpolation point should be removed
from the interpolation set at each iteration.
byrd_omojokun_factor : float, optional
Factor by which the trust-region radius is reduced for the computations
of the normal step in the Byrd-Omojokun composite-step approach.
threshold_ratio_constraints : float, optional
Threshold used to determine which constraints should be taken into
account when decreasing the penalty parameter.
large_shift_factor : float, optional
Factor used to determine whether the point around which the quadratic
models are built should be updated.
large_gradient_factor : float, optional
Factor used to determine whether the models should be reset.
resolution_factor : float, optional
Factor by which the resolution is decreased.
improve_tcg : bool, optional
Whether to improve the steps computed by the truncated conjugate
gradient method when the trust-region boundary is reached.
References
----------
.. [1] J. Nocedal and S. J. Wright. *Numerical Optimization*. Springer Ser.
Oper. Res. Financ. Eng. Springer, New York, NY, USA, second edition,
2006. `doi:10.1007/978-0-387-40065-5
<https://doi.org/10.1007/978-0-387-40065-5>`_.
.. [2] M. J. D. Powell. A direct search optimization method that models the
objective and constraint functions by linear interpolation. In S. Gomez
and J.-P. Hennart, editors, *Advances in Optimization and Numerical
Analysis*, volume 275 of Math. Appl., pages 51--67. Springer, Dordrecht,
Netherlands, 1994. `doi:10.1007/978-94-015-8330-5_4
<https://doi.org/10.1007/978-94-015-8330-5_4>`_.
.. [3] T. M. Ragonneau. *Model-Based Derivative-Free Optimization Methods
and Software*. PhD thesis, Department of Applied Mathematics, The Hong
Kong Polytechnic University, Hong Kong, China, 2022. URL:
https://theses.lib.polyu.edu.hk/handle/200/12294.
Examples
--------
To demonstrate how to use `minimize`, we first minimize the Rosenbrock
function implemented in `scipy.optimize` in an unconstrained setting.
.. testsetup::
import numpy as np
np.set_printoptions(precision=3, suppress=True)
>>> from cobyqa import minimize
>>> from scipy.optimize import rosen
To solve the problem using COBYQA, run:
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize(rosen, x0)
>>> res.x
array([1., 1., 1., 1., 1.])
To see how bound and constraints are handled using `minimize`, we solve
Example 16.4 of [1]_, defined as
.. math::
\begin{aligned}
\min_{x \in \mathbb{R}^2} & \quad (x_1 - 1)^2 + (x_2 - 2.5)^2\\
\text{s.t.} & \quad -x_1 + 2x_2 \le 2,\\
& \quad x_1 + 2x_2 \le 6,\\
& \quad x_1 - 2x_2 \le 2,\\
& \quad x_1 \ge 0,\\
& \quad x_2 \ge 0.
\end{aligned}
>>> import numpy as np
>>> from scipy.optimize import Bounds, LinearConstraint
Its objective function can be implemented as:
>>> def fun(x):
... return (x[0] - 1.0)**2 + (x[1] - 2.5)**2
This problem can be solved using `minimize` as:
>>> x0 = [2.0, 0.0]
>>> bounds = Bounds([0.0, 0.0], np.inf)
>>> constraints = LinearConstraint([
... [-1.0, 2.0],
... [1.0, 2.0],
... [1.0, -2.0],
... ], -np.inf, [2.0, 6.0, 2.0])
>>> res = minimize(fun, x0, bounds=bounds, constraints=constraints)
>>> res.x
array([1.4, 1.7])
To see how nonlinear constraints are handled, we solve Problem (F) of [2]_,
defined as
.. math::
\begin{aligned}
\min_{x \in \mathbb{R}^2} & \quad -x_1 - x_2\\
\text{s.t.} & \quad x_1^2 - x_2 \le 0,\\
& \quad x_1^2 + x_2^2 \le 1.
\end{aligned}
>>> from scipy.optimize import NonlinearConstraint
Its objective and constraint functions can be implemented as:
>>> def fun(x):
... return -x[0] - x[1]
>>>
>>> def cub(x):
... return [x[0]**2 - x[1], x[0]**2 + x[1]**2]
This problem can be solved using `minimize` as:
>>> x0 = [1.0, 1.0]
>>> constraints = NonlinearConstraint(cub, -np.inf, [0.0, 1.0])
>>> res = minimize(fun, x0, constraints=constraints)
>>> res.x
array([0.707, 0.707])
Finally, to see how to supply linear and nonlinear constraints
simultaneously, we solve Problem (G) of [2]_, defined as
.. math::
\begin{aligned}
\min_{x \in \mathbb{R}^3} & \quad x_3\\
\text{s.t.} & \quad 5x_1 - x_2 + x_3 \ge 0,\\
& \quad -5x_1 - x_2 + x_3 \ge 0,\\
& \quad x_1^2 + x_2^2 + 4x_2 \le x_3.
\end{aligned}
Its objective and nonlinear constraint functions can be implemented as:
>>> def fun(x):
... return x[2]
>>>
>>> def cub(x):
... return x[0]**2 + x[1]**2 + 4.0*x[1] - x[2]
This problem can be solved using `minimize` as:
>>> x0 = [1.0, 1.0, 1.0]
>>> constraints = [
... LinearConstraint(
... [[5.0, -1.0, 1.0], [-5.0, -1.0, 1.0]],
... [0.0, 0.0],
... np.inf,
... ),
... NonlinearConstraint(cub, -np.inf, 0.0),
... ]
>>> res = minimize(fun, x0, constraints=constraints)
>>> res.x
array([ 0., -3., -3.])
"""
# Get basic options that are needed for the initialization.
if options is None:
options = {}
else:
options = dict(options)
verbose = options.get(Options.VERBOSE, DEFAULT_OPTIONS[Options.VERBOSE])
verbose = bool(verbose)
feasibility_tol = options.get(
Options.FEASIBILITY_TOL,
DEFAULT_OPTIONS[Options.FEASIBILITY_TOL],
)
feasibility_tol = float(feasibility_tol)
scale = options.get(Options.SCALE, DEFAULT_OPTIONS[Options.SCALE])
scale = bool(scale)
store_history = options.get(
Options.STORE_HISTORY,
DEFAULT_OPTIONS[Options.STORE_HISTORY],
)
store_history = bool(store_history)
if Options.HISTORY_SIZE in options and options[Options.HISTORY_SIZE] <= 0:
raise ValueError("The size of the history must be positive.")
history_size = options.get(
Options.HISTORY_SIZE,
DEFAULT_OPTIONS[Options.HISTORY_SIZE],
)
history_size = int(history_size)
if Options.FILTER_SIZE in options and options[Options.FILTER_SIZE] <= 0:
raise ValueError("The size of the filter must be positive.")
filter_size = options.get(
Options.FILTER_SIZE,
DEFAULT_OPTIONS[Options.FILTER_SIZE],
)
filter_size = int(filter_size)
debug = options.get(Options.DEBUG, DEFAULT_OPTIONS[Options.DEBUG])
debug = bool(debug)
# Initialize the objective function.
if not isinstance(args, tuple):
args = (args,)
obj = ObjectiveFunction(fun, verbose, debug, *args)
# Initialize the bound constraints.
if not hasattr(x0, "__len__"):
x0 = [x0]
n_orig = len(x0)
bounds = BoundConstraints(_get_bounds(bounds, n_orig))
# Initialize the constraints.
linear_constraints, nonlinear_constraints = _get_constraints(constraints)
linear = LinearConstraints(linear_constraints, n_orig, debug)
nonlinear = NonlinearConstraints(nonlinear_constraints, verbose, debug)
# Initialize the problem (and remove the fixed variables).
pb = Problem(
obj,
x0,
bounds,
linear,
nonlinear,
callback,
feasibility_tol,
scale,
store_history,
history_size,
filter_size,
debug,
)
# Set the default options.
_set_default_options(options, pb.n)
constants = _set_default_constants(**kwargs)
# Initialize the models and skip the computations whenever possible.
if not pb.bounds.is_feasible:
# The bound constraints are infeasible.
return _build_result(
pb,
0.0,
False,
ExitStatus.INFEASIBLE_ERROR,
0,
options,
)
elif pb.n == 0:
# All variables are fixed by the bound constraints.
return _build_result(
pb,
0.0,
True,
ExitStatus.FIXED_SUCCESS,
0,
options,
)
if verbose:
print("Starting the optimization procedure.")
print(f"Initial trust-region radius: {options[Options.RHOBEG]}.")
print(f"Final trust-region radius: {options[Options.RHOEND]}.")
print(
f"Maximum number of function evaluations: "
f"{options[Options.MAX_EVAL]}."
)
print(f"Maximum number of iterations: {options[Options.MAX_ITER]}.")
print()
try:
framework = TrustRegion(pb, options, constants)
except TargetSuccess:
# The target on the objective function value has been reached
return _build_result(
pb,
0.0,
True,
ExitStatus.TARGET_SUCCESS,
0,
options,
)
except CallbackSuccess:
# The callback raised a StopIteration exception.
return _build_result(
pb,
0.0,
True,
ExitStatus.CALLBACK_SUCCESS,
0,
options,
)
except FeasibleSuccess:
# The feasibility problem has been solved successfully.
return _build_result(
pb,
0.0,
True,
ExitStatus.FEASIBLE_SUCCESS,
0,
options,
)
except MaxEvalError:
# The maximum number of function evaluations has been exceeded.
return _build_result(
pb,
0.0,
False,
ExitStatus.MAX_ITER_WARNING,
0,
options,
)
except np.linalg.LinAlgError:
# The construction of the initial interpolation set failed.
return _build_result(
pb,
0.0,
False,
ExitStatus.LINALG_ERROR,
0,
options,
)
# Start the optimization procedure.
success = False
n_iter = 0
k_new = None
n_short_steps = 0
n_very_short_steps = 0
n_alt_models = 0
while True:
# Stop the optimization procedure if the maximum number of iterations
# has been exceeded. We do not write the main loop as a for loop
# because we want to access the number of iterations outside the loop.
if n_iter >= options[Options.MAX_ITER]:
status = ExitStatus.MAX_ITER_WARNING
break
n_iter += 1
# Update the point around which the quadratic models are built.
if (
np.linalg.norm(
framework.x_best - framework.models.interpolation.x_base
)
>= constants[Constants.LARGE_SHIFT_FACTOR] * framework.radius
):
framework.shift_x_base(options)
# Evaluate the trial step.
radius_save = framework.radius
normal_step, tangential_step = framework.get_trust_region_step(options)
step = normal_step + tangential_step
s_norm = np.linalg.norm(step)
# If the trial step is too short, we do not attempt to evaluate the
# objective and constraint functions. Instead, we reduce the
# trust-region radius and check whether the resolution should be
# enhanced and whether the geometry of the interpolation set should be
# improved. Otherwise, we entertain a classical iteration. The
# criterion for performing an exceptional jump is taken from NEWUOA.
if (
s_norm
<= constants[Constants.SHORT_STEP_THRESHOLD] * framework.resolution
):
framework.radius *= constants[Constants.DECREASE_RESOLUTION_FACTOR]
if radius_save > framework.resolution:
n_short_steps = 0
n_very_short_steps = 0
else:
n_short_steps += 1
n_very_short_steps += 1
if s_norm > 0.1 * framework.resolution:
n_very_short_steps = 0
enhance_resolution = n_short_steps >= 5 or n_very_short_steps >= 3
if enhance_resolution:
n_short_steps = 0
n_very_short_steps = 0
improve_geometry = False
else:
try:
k_new, dist_new = framework.get_index_to_remove()
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
improve_geometry = dist_new > max(
framework.radius,
constants[Constants.RESOLUTION_FACTOR]
* framework.resolution,
)
else:
# Increase the penalty parameter if necessary.
same_best_point = framework.increase_penalty(step)
if same_best_point:
# Evaluate the objective and constraint functions.
try:
fun_val, cub_val, ceq_val = _eval(
pb,
framework,
step,
options,
)
except TargetSuccess:
status = ExitStatus.TARGET_SUCCESS
success = True
break
except FeasibleSuccess:
status = ExitStatus.FEASIBLE_SUCCESS
success = True
break
except CallbackSuccess:
status = ExitStatus.CALLBACK_SUCCESS
success = True
break
except MaxEvalError:
status = ExitStatus.MAX_EVAL_WARNING
break
# Perform a second-order correction step if necessary.
merit_old = framework.merit(
framework.x_best,
framework.fun_best,
framework.cub_best,
framework.ceq_best,
)
merit_new = framework.merit(
framework.x_best + step, fun_val, cub_val, ceq_val
)
if (
pb.type == "nonlinearly constrained"
and merit_new > merit_old
and np.linalg.norm(normal_step)
> constants[Constants.BYRD_OMOJOKUN_FACTOR] ** 2.0
* framework.radius
):
soc_step = framework.get_second_order_correction_step(
step, options
)
if np.linalg.norm(soc_step) > 0.0:
step += soc_step
# Evaluate the objective and constraint functions.
try:
fun_val, cub_val, ceq_val = _eval(
pb,
framework,
step,
options,
)
except TargetSuccess:
status = ExitStatus.TARGET_SUCCESS
success = True
break
except FeasibleSuccess:
status = ExitStatus.FEASIBLE_SUCCESS
success = True
break
except CallbackSuccess:
status = ExitStatus.CALLBACK_SUCCESS
success = True
break
except MaxEvalError:
status = ExitStatus.MAX_EVAL_WARNING
break
# Calculate the reduction ratio.
ratio = framework.get_reduction_ratio(
step,
fun_val,
cub_val,
ceq_val,
)
# Choose an interpolation point to remove.
try:
k_new = framework.get_index_to_remove(
framework.x_best + step
)[0]
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
# Update the interpolation set.
try:
ill_conditioned = framework.models.update_interpolation(
k_new, framework.x_best + step, fun_val, cub_val,
ceq_val
)
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
framework.set_best_index()
# Update the trust-region radius.
framework.update_radius(step, ratio)
# Attempt to replace the models by the alternative ones.
if framework.radius <= framework.resolution:
if ratio >= constants[Constants.VERY_LOW_RATIO]:
n_alt_models = 0
else:
n_alt_models += 1
grad = framework.models.fun_grad(framework.x_best)
try:
grad_alt = framework.models.fun_alt_grad(
framework.x_best
)
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
if np.linalg.norm(grad) < constants[
Constants.LARGE_GRADIENT_FACTOR
] * np.linalg.norm(grad_alt):
n_alt_models = 0
if n_alt_models >= 3:
try:
framework.models.reset_models()
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
n_alt_models = 0
# Update the Lagrange multipliers.
framework.set_multipliers(framework.x_best + step)
# Check whether the resolution should be enhanced.
try:
k_new, dist_new = framework.get_index_to_remove()
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
improve_geometry = (
ill_conditioned
or ratio <= constants[Constants.LOW_RATIO]
and dist_new
> max(
framework.radius,
constants[Constants.RESOLUTION_FACTOR]
* framework.resolution,
)
)
enhance_resolution = (
radius_save <= framework.resolution
and ratio <= constants[Constants.LOW_RATIO]
and not improve_geometry
)
else:
# When increasing the penalty parameter, the best point so far
# may change. In this case, we restart the iteration.
enhance_resolution = False
improve_geometry = False
# Reduce the resolution if necessary.
if enhance_resolution:
if framework.resolution <= options[Options.RHOEND]:
success = True
status = ExitStatus.RADIUS_SUCCESS
break
framework.enhance_resolution(options)
framework.decrease_penalty()
if verbose:
maxcv_val = pb.maxcv(
framework.x_best, framework.cub_best, framework.ceq_best
)
_print_step(
f"New trust-region radius: {framework.resolution}",
pb,
pb.build_x(framework.x_best),
framework.fun_best,
maxcv_val,
pb.n_eval,
n_iter,
)
print()
# Improve the geometry of the interpolation set if necessary.
if improve_geometry:
try:
step = framework.get_geometry_step(k_new, options)
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
# Evaluate the objective and constraint functions.
try:
fun_val, cub_val, ceq_val = _eval(pb, framework, step, options)
except TargetSuccess:
status = ExitStatus.TARGET_SUCCESS
success = True
break
except FeasibleSuccess:
status = ExitStatus.FEASIBLE_SUCCESS
success = True
break
except CallbackSuccess:
status = ExitStatus.CALLBACK_SUCCESS
success = True
break
except MaxEvalError:
status = ExitStatus.MAX_EVAL_WARNING
break
# Update the interpolation set.
try:
framework.models.update_interpolation(
k_new,
framework.x_best + step,
fun_val,
cub_val,
ceq_val,
)
except np.linalg.LinAlgError:
status = ExitStatus.LINALG_ERROR
break
framework.set_best_index()
return _build_result(
pb,
framework.penalty,
success,
status,
n_iter,
options,
)
def _get_bounds(bounds, n):
"""
Uniformize the bounds.
"""
if bounds is None:
return Bounds(np.full(n, -np.inf), np.full(n, np.inf))
elif isinstance(bounds, Bounds):
if bounds.lb.shape != (n,) or bounds.ub.shape != (n,):
raise ValueError(f"The bounds must have {n} elements.")
return bounds
elif hasattr(bounds, "__len__"):
bounds = np.asarray(bounds)
if bounds.shape != (n, 2):
raise ValueError(
"The shape of the bounds is not compatible with "
"the number of variables."
)
return Bounds(bounds[:, 0], bounds[:, 1])
else:
raise TypeError(
"The bounds must be an instance of "
"scipy.optimize.Bounds or an array-like object."
)
def _get_constraints(constraints):
"""
Extract the linear and nonlinear constraints.
"""
if isinstance(constraints, dict) or not hasattr(constraints, "__len__"):
constraints = (constraints,)
# Extract the linear and nonlinear constraints.
linear_constraints = []
nonlinear_constraints = []
for constraint in constraints:
if isinstance(constraint, LinearConstraint):
lb = exact_1d_array(
constraint.lb,
"The lower bound of the linear constraints must be a vector.",
)
ub = exact_1d_array(
constraint.ub,
"The upper bound of the linear constraints must be a vector.",
)
linear_constraints.append(
LinearConstraint(
constraint.A,
*np.broadcast_arrays(lb, ub),
)
)
elif isinstance(constraint, NonlinearConstraint):
lb = exact_1d_array(
constraint.lb,
"The lower bound of the "
"nonlinear constraints must be a "
"vector.",
)
ub = exact_1d_array(
constraint.ub,
"The upper bound of the "
"nonlinear constraints must be a "
"vector.",
)
nonlinear_constraints.append(
NonlinearConstraint(
constraint.fun,
*np.broadcast_arrays(lb, ub),
)
)
elif isinstance(constraint, dict):
if "type" not in constraint or constraint["type"] not in (
"eq",
"ineq",
):
raise ValueError('The constraint type must be "eq" or "ineq".')
if "fun" not in constraint or not callable(constraint["fun"]):
raise ValueError("The constraint function must be callable.")
nonlinear_constraints.append(
{
"fun": constraint["fun"],
"type": constraint["type"],
"args": constraint.get("args", ()),
}
)
else:
raise TypeError(
"The constraints must be instances of "
"scipy.optimize.LinearConstraint, "
"scipy.optimize.NonlinearConstraint, or dict."
)
return linear_constraints, nonlinear_constraints
def _set_default_options(options, n):
"""
Set the default options.
"""
if Options.RHOBEG in options and options[Options.RHOBEG] <= 0.0:
raise ValueError("The initial trust-region radius must be positive.")
if Options.RHOEND in options and options[Options.RHOEND] < 0.0:
raise ValueError("The final trust-region radius must be nonnegative.")
if Options.RHOBEG in options and Options.RHOEND in options:
if options[Options.RHOBEG] < options[Options.RHOEND]:
raise ValueError(
"The initial trust-region radius must be greater "
"than or equal to the final trust-region radius."
)
elif Options.RHOBEG in options:
options[Options.RHOEND.value] = np.min(
[
DEFAULT_OPTIONS[Options.RHOEND],
options[Options.RHOBEG],
]
)
elif Options.RHOEND in options:
options[Options.RHOBEG.value] = np.max(
[
DEFAULT_OPTIONS[Options.RHOBEG],
options[Options.RHOEND],
]
)
else:
options[Options.RHOBEG.value] = DEFAULT_OPTIONS[Options.RHOBEG]
options[Options.RHOEND.value] = DEFAULT_OPTIONS[Options.RHOEND]
options[Options.RHOBEG.value] = float(options[Options.RHOBEG])
options[Options.RHOEND.value] = float(options[Options.RHOEND])
if Options.NPT in options and options[Options.NPT] <= 0:
raise ValueError("The number of interpolation points must be "
"positive.")
if (
Options.NPT in options
and options[Options.NPT] > ((n + 1) * (n + 2)) // 2
):
raise ValueError(
f"The number of interpolation points must be at most "
f"{((n + 1) * (n + 2)) // 2}."
)
options.setdefault(Options.NPT.value, DEFAULT_OPTIONS[Options.NPT](n))
options[Options.NPT.value] = int(options[Options.NPT])
if Options.MAX_EVAL in options and options[Options.MAX_EVAL] <= 0:
raise ValueError(
"The maximum number of function evaluations must be positive."
)
options.setdefault(
Options.MAX_EVAL.value,
np.max(
[
DEFAULT_OPTIONS[Options.MAX_EVAL](n),
options[Options.NPT] + 1,
]
),
)
options[Options.MAX_EVAL.value] = int(options[Options.MAX_EVAL])
if Options.MAX_ITER in options and options[Options.MAX_ITER] <= 0:
raise ValueError("The maximum number of iterations must be positive.")
options.setdefault(
Options.MAX_ITER.value,
DEFAULT_OPTIONS[Options.MAX_ITER](n),
)
options[Options.MAX_ITER.value] = int(options[Options.MAX_ITER])
options.setdefault(Options.TARGET.value, DEFAULT_OPTIONS[Options.TARGET])
options[Options.TARGET.value] = float(options[Options.TARGET])
options.setdefault(
Options.FEASIBILITY_TOL.value,
DEFAULT_OPTIONS[Options.FEASIBILITY_TOL],
)
options[Options.FEASIBILITY_TOL.value] = float(
options[Options.FEASIBILITY_TOL]
)
options.setdefault(Options.VERBOSE.value, DEFAULT_OPTIONS[Options.VERBOSE])
options[Options.VERBOSE.value] = bool(options[Options.VERBOSE])
options.setdefault(Options.SCALE.value, DEFAULT_OPTIONS[Options.SCALE])
options[Options.SCALE.value] = bool(options[Options.SCALE])
options.setdefault(
Options.FILTER_SIZE.value,
DEFAULT_OPTIONS[Options.FILTER_SIZE],
)
options[Options.FILTER_SIZE.value] = int(options[Options.FILTER_SIZE])
options.setdefault(
Options.STORE_HISTORY.value,
DEFAULT_OPTIONS[Options.STORE_HISTORY],
)
options[Options.STORE_HISTORY.value] = bool(options[Options.STORE_HISTORY])
options.setdefault(
Options.HISTORY_SIZE.value,
DEFAULT_OPTIONS[Options.HISTORY_SIZE],
)
options[Options.HISTORY_SIZE.value] = int(options[Options.HISTORY_SIZE])
options.setdefault(Options.DEBUG.value, DEFAULT_OPTIONS[Options.DEBUG])
options[Options.DEBUG.value] = bool(options[Options.DEBUG])
# Check whether they are any unknown options.
for key in options:
if key not in Options.__members__.values():
warnings.warn(f"Unknown option: {key}.", RuntimeWarning, 3)
def _set_default_constants(**kwargs):
"""
Set the default constants.
"""
constants = dict(kwargs)
constants.setdefault(
Constants.DECREASE_RADIUS_FACTOR.value,
DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_FACTOR],
)
constants[Constants.DECREASE_RADIUS_FACTOR.value] = float(
constants[Constants.DECREASE_RADIUS_FACTOR]
)
if (
constants[Constants.DECREASE_RADIUS_FACTOR] <= 0.0
or constants[Constants.DECREASE_RADIUS_FACTOR] >= 1.0
):
raise ValueError(
"The constant decrease_radius_factor must be in the interval "
"(0, 1)."
)
constants.setdefault(
Constants.INCREASE_RADIUS_THRESHOLD.value,
DEFAULT_CONSTANTS[Constants.INCREASE_RADIUS_THRESHOLD],
)
constants[Constants.INCREASE_RADIUS_THRESHOLD.value] = float(
constants[Constants.INCREASE_RADIUS_THRESHOLD]
)
if constants[Constants.INCREASE_RADIUS_THRESHOLD] <= 1.0:
raise ValueError(
"The constant increase_radius_threshold must be greater than 1."
)
if (
Constants.INCREASE_RADIUS_FACTOR in constants
and constants[Constants.INCREASE_RADIUS_FACTOR] <= 1.0
):
raise ValueError(
"The constant increase_radius_factor must be greater than 1."
)
if (
Constants.DECREASE_RADIUS_THRESHOLD in constants
and constants[Constants.DECREASE_RADIUS_THRESHOLD] <= 1.0
):
raise ValueError(
"The constant decrease_radius_threshold must be greater than 1."
)
if (
Constants.INCREASE_RADIUS_FACTOR in constants
and Constants.DECREASE_RADIUS_THRESHOLD in constants
):
if (
constants[Constants.DECREASE_RADIUS_THRESHOLD]
>= constants[Constants.INCREASE_RADIUS_FACTOR]
):
raise ValueError(
"The constant decrease_radius_threshold must be "
"less than increase_radius_factor."
)
elif Constants.INCREASE_RADIUS_FACTOR in constants:
constants[Constants.DECREASE_RADIUS_THRESHOLD.value] = np.min(
[
DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_THRESHOLD],
0.5 * (1.0 + constants[Constants.INCREASE_RADIUS_FACTOR]),
]
)
elif Constants.DECREASE_RADIUS_THRESHOLD in constants:
constants[Constants.INCREASE_RADIUS_FACTOR.value] = np.max(
[
DEFAULT_CONSTANTS[Constants.INCREASE_RADIUS_FACTOR],
2.0 * constants[Constants.DECREASE_RADIUS_THRESHOLD],
]
)
else:
constants[Constants.INCREASE_RADIUS_FACTOR.value] = DEFAULT_CONSTANTS[
Constants.INCREASE_RADIUS_FACTOR
]
constants[Constants.DECREASE_RADIUS_THRESHOLD.value] = (
DEFAULT_CONSTANTS[Constants.DECREASE_RADIUS_THRESHOLD])
constants.setdefault(
Constants.DECREASE_RESOLUTION_FACTOR.value,
DEFAULT_CONSTANTS[Constants.DECREASE_RESOLUTION_FACTOR],
)
constants[Constants.DECREASE_RESOLUTION_FACTOR.value] = float(
constants[Constants.DECREASE_RESOLUTION_FACTOR]
)
if (
constants[Constants.DECREASE_RESOLUTION_FACTOR] <= 0.0
or constants[Constants.DECREASE_RESOLUTION_FACTOR] >= 1.0
):
raise ValueError(
"The constant decrease_resolution_factor must be in the interval "
"(0, 1)."
)
if (
Constants.LARGE_RESOLUTION_THRESHOLD in constants
and constants[Constants.LARGE_RESOLUTION_THRESHOLD] <= 1.0
):
raise ValueError(
"The constant large_resolution_threshold must be greater than 1."
)
if (
Constants.MODERATE_RESOLUTION_THRESHOLD in constants
and constants[Constants.MODERATE_RESOLUTION_THRESHOLD] <= 1.0
):
raise ValueError(
"The constant moderate_resolution_threshold must be greater than "
"1."
)
if (
Constants.LARGE_RESOLUTION_THRESHOLD in constants
and Constants.MODERATE_RESOLUTION_THRESHOLD in constants
):
if (
constants[Constants.MODERATE_RESOLUTION_THRESHOLD]
> constants[Constants.LARGE_RESOLUTION_THRESHOLD]
):
raise ValueError(
"The constant moderate_resolution_threshold "
"must be at most large_resolution_threshold."
)
elif Constants.LARGE_RESOLUTION_THRESHOLD in constants:
constants[Constants.MODERATE_RESOLUTION_THRESHOLD.value] = np.min(
[
DEFAULT_CONSTANTS[Constants.MODERATE_RESOLUTION_THRESHOLD],
constants[Constants.LARGE_RESOLUTION_THRESHOLD],
]
)
elif Constants.MODERATE_RESOLUTION_THRESHOLD in constants:
constants[Constants.LARGE_RESOLUTION_THRESHOLD.value] = np.max(
[
DEFAULT_CONSTANTS[Constants.LARGE_RESOLUTION_THRESHOLD],
constants[Constants.MODERATE_RESOLUTION_THRESHOLD],
]
)
else:
constants[Constants.LARGE_RESOLUTION_THRESHOLD.value] = (
DEFAULT_CONSTANTS[Constants.LARGE_RESOLUTION_THRESHOLD]
)
constants[Constants.MODERATE_RESOLUTION_THRESHOLD.value] = (
DEFAULT_CONSTANTS[Constants.MODERATE_RESOLUTION_THRESHOLD]
)
if Constants.LOW_RATIO in constants and (
constants[Constants.LOW_RATIO] <= 0.0
or constants[Constants.LOW_RATIO] >= 1.0
):
raise ValueError(
"The constant low_ratio must be in the interval (0, 1)."
)
if Constants.HIGH_RATIO in constants and (
constants[Constants.HIGH_RATIO] <= 0.0
or constants[Constants.HIGH_RATIO] >= 1.0
):
raise ValueError(
"The constant high_ratio must be in the interval (0, 1)."
)
if Constants.LOW_RATIO in constants and Constants.HIGH_RATIO in constants:
if constants[Constants.LOW_RATIO] > constants[Constants.HIGH_RATIO]:
raise ValueError(
"The constant low_ratio must be at most high_ratio."
)
elif Constants.LOW_RATIO in constants:
constants[Constants.HIGH_RATIO.value] = np.max(
[
DEFAULT_CONSTANTS[Constants.HIGH_RATIO],
constants[Constants.LOW_RATIO],
]
)
elif Constants.HIGH_RATIO in constants:
constants[Constants.LOW_RATIO.value] = np.min(
[
DEFAULT_CONSTANTS[Constants.LOW_RATIO],
constants[Constants.HIGH_RATIO],
]
)
else:
constants[Constants.LOW_RATIO.value] = DEFAULT_CONSTANTS[
Constants.LOW_RATIO
]
constants[Constants.HIGH_RATIO.value] = DEFAULT_CONSTANTS[
Constants.HIGH_RATIO
]
constants.setdefault(
Constants.VERY_LOW_RATIO.value,
DEFAULT_CONSTANTS[Constants.VERY_LOW_RATIO],
)
constants[Constants.VERY_LOW_RATIO.value] = float(
constants[Constants.VERY_LOW_RATIO]
)
if (
constants[Constants.VERY_LOW_RATIO] <= 0.0
or constants[Constants.VERY_LOW_RATIO] >= 1.0
):
raise ValueError(
"The constant very_low_ratio must be in the interval (0, 1)."
)
if (
Constants.PENALTY_INCREASE_THRESHOLD in constants
and constants[Constants.PENALTY_INCREASE_THRESHOLD] < 1.0
):
raise ValueError(
"The constant penalty_increase_threshold must be "
"greater than or equal to 1."
)
if (
Constants.PENALTY_INCREASE_FACTOR in constants
and constants[Constants.PENALTY_INCREASE_FACTOR] <= 1.0
):
raise ValueError(
"The constant penalty_increase_factor must be greater than 1."
)
if (
Constants.PENALTY_INCREASE_THRESHOLD in constants
and Constants.PENALTY_INCREASE_FACTOR in constants
):
if (
constants[Constants.PENALTY_INCREASE_FACTOR]
< constants[Constants.PENALTY_INCREASE_THRESHOLD]
):
raise ValueError(
"The constant penalty_increase_factor must be "
"greater than or equal to "
"penalty_increase_threshold."
)
elif Constants.PENALTY_INCREASE_THRESHOLD in constants:
constants[Constants.PENALTY_INCREASE_FACTOR.value] = np.max(
[
DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_FACTOR],
constants[Constants.PENALTY_INCREASE_THRESHOLD],
]
)
elif Constants.PENALTY_INCREASE_FACTOR in constants:
constants[Constants.PENALTY_INCREASE_THRESHOLD.value] = np.min(
[
DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_THRESHOLD],
constants[Constants.PENALTY_INCREASE_FACTOR],
]
)
else:
constants[Constants.PENALTY_INCREASE_THRESHOLD.value] = (
DEFAULT_CONSTANTS[Constants.PENALTY_INCREASE_THRESHOLD]
)
constants[Constants.PENALTY_INCREASE_FACTOR.value] = DEFAULT_CONSTANTS[
Constants.PENALTY_INCREASE_FACTOR
]
constants.setdefault(
Constants.SHORT_STEP_THRESHOLD.value,
DEFAULT_CONSTANTS[Constants.SHORT_STEP_THRESHOLD],
)
constants[Constants.SHORT_STEP_THRESHOLD.value] = float(
constants[Constants.SHORT_STEP_THRESHOLD]
)
if (
constants[Constants.SHORT_STEP_THRESHOLD] <= 0.0
or constants[Constants.SHORT_STEP_THRESHOLD] >= 1.0
):
raise ValueError(
"The constant short_step_threshold must be in the interval (0, 1)."
)
constants.setdefault(
Constants.LOW_RADIUS_FACTOR.value,
DEFAULT_CONSTANTS[Constants.LOW_RADIUS_FACTOR],
)
constants[Constants.LOW_RADIUS_FACTOR.value] = float(
constants[Constants.LOW_RADIUS_FACTOR]
)
if (
constants[Constants.LOW_RADIUS_FACTOR] <= 0.0
or constants[Constants.LOW_RADIUS_FACTOR] >= 1.0
):
raise ValueError(
"The constant low_radius_factor must be in the interval (0, 1)."
)
constants.setdefault(
Constants.BYRD_OMOJOKUN_FACTOR.value,
DEFAULT_CONSTANTS[Constants.BYRD_OMOJOKUN_FACTOR],
)
constants[Constants.BYRD_OMOJOKUN_FACTOR.value] = float(
constants[Constants.BYRD_OMOJOKUN_FACTOR]
)
if (
constants[Constants.BYRD_OMOJOKUN_FACTOR] <= 0.0
or constants[Constants.BYRD_OMOJOKUN_FACTOR] >= 1.0
):
raise ValueError(
"The constant byrd_omojokun_factor must be in the interval (0, 1)."
)
constants.setdefault(
Constants.THRESHOLD_RATIO_CONSTRAINTS.value,
DEFAULT_CONSTANTS[Constants.THRESHOLD_RATIO_CONSTRAINTS],
)
constants[Constants.THRESHOLD_RATIO_CONSTRAINTS.value] = float(
constants[Constants.THRESHOLD_RATIO_CONSTRAINTS]
)
if constants[Constants.THRESHOLD_RATIO_CONSTRAINTS] <= 1.0:
raise ValueError(
"The constant threshold_ratio_constraints must be greater than 1."
)
constants.setdefault(
Constants.LARGE_SHIFT_FACTOR.value,
DEFAULT_CONSTANTS[Constants.LARGE_SHIFT_FACTOR],
)
constants[Constants.LARGE_SHIFT_FACTOR.value] = float(
constants[Constants.LARGE_SHIFT_FACTOR]
)
if constants[Constants.LARGE_SHIFT_FACTOR] < 0.0:
raise ValueError("The constant large_shift_factor must be "
"nonnegative.")
constants.setdefault(
Constants.LARGE_GRADIENT_FACTOR.value,
DEFAULT_CONSTANTS[Constants.LARGE_GRADIENT_FACTOR],
)
constants[Constants.LARGE_GRADIENT_FACTOR.value] = float(
constants[Constants.LARGE_GRADIENT_FACTOR]
)
if constants[Constants.LARGE_GRADIENT_FACTOR] <= 1.0:
raise ValueError(
"The constant large_gradient_factor must be greater than 1."
)
constants.setdefault(
Constants.RESOLUTION_FACTOR.value,
DEFAULT_CONSTANTS[Constants.RESOLUTION_FACTOR],
)
constants[Constants.RESOLUTION_FACTOR.value] = float(
constants[Constants.RESOLUTION_FACTOR]
)
if constants[Constants.RESOLUTION_FACTOR] <= 1.0:
raise ValueError(
"The constant resolution_factor must be greater than 1."
)
constants.setdefault(
Constants.IMPROVE_TCG.value,
DEFAULT_CONSTANTS[Constants.IMPROVE_TCG],
)
constants[Constants.IMPROVE_TCG.value] = bool(
constants[Constants.IMPROVE_TCG]
)
# Check whether they are any unknown options.
for key in kwargs:
if key not in Constants.__members__.values():
warnings.warn(f"Unknown constant: {key}.", RuntimeWarning, 3)
return constants
def _eval(pb, framework, step, options):
"""
Evaluate the objective and constraint functions.
"""
if pb.n_eval >= options[Options.MAX_EVAL]:
raise MaxEvalError
x_eval = framework.x_best + step
fun_val, cub_val, ceq_val = pb(x_eval)
r_val = pb.maxcv(x_eval, cub_val, ceq_val)
if (
fun_val <= options[Options.TARGET]
and r_val <= options[Options.FEASIBILITY_TOL]
):
raise TargetSuccess
if pb.is_feasibility and r_val <= options[Options.FEASIBILITY_TOL]:
raise FeasibleSuccess
return fun_val, cub_val, ceq_val
def _build_result(pb, penalty, success, status, n_iter, options):
"""
Build the result of the optimization process.
"""
# Build the result.
x, fun, maxcv = pb.best_eval(penalty)
success = success and np.isfinite(fun) and np.isfinite(maxcv)
if status not in [ExitStatus.TARGET_SUCCESS, ExitStatus.FEASIBLE_SUCCESS]:
success = success and maxcv <= options[Options.FEASIBILITY_TOL]
result = OptimizeResult()
result.message = {
ExitStatus.RADIUS_SUCCESS: "The lower bound for the trust-region "
"radius has been reached",
ExitStatus.TARGET_SUCCESS: "The target objective function value has "
"been reached",
ExitStatus.FIXED_SUCCESS: "All variables are fixed by the bound "
"constraints",
ExitStatus.CALLBACK_SUCCESS: "The callback requested to stop the "
"optimization procedure",
ExitStatus.FEASIBLE_SUCCESS: "The feasibility problem received has "
"been solved successfully",
ExitStatus.MAX_EVAL_WARNING: "The maximum number of function "
"evaluations has been exceeded",
ExitStatus.MAX_ITER_WARNING: "The maximum number of iterations has "
"been exceeded",
ExitStatus.INFEASIBLE_ERROR: "The bound constraints are infeasible",
ExitStatus.LINALG_ERROR: "A linear algebra error occurred",
}.get(status, "Unknown exit status")
result.success = success
result.status = status.value
result.x = pb.build_x(x)
result.fun = fun
result.maxcv = maxcv
result.nfev = pb.n_eval
result.nit = n_iter
if options[Options.STORE_HISTORY]:
result.fun_history = pb.fun_history
result.maxcv_history = pb.maxcv_history
# Print the result if requested.
if options[Options.VERBOSE]:
_print_step(
result.message,
pb,
result.x,
result.fun,
result.maxcv,
result.nfev,
result.nit,
)
return result
def _print_step(message, pb, x, fun_val, r_val, n_eval, n_iter):
"""
Print information about the current state of the optimization process.
"""
print()
print(f"{message}.")
print(f"Number of function evaluations: {n_eval}.")
print(f"Number of iterations: {n_iter}.")
if not pb.is_feasibility:
print(f"Least value of {pb.fun_name}: {fun_val}.")
print(f"Maximum constraint violation: {r_val}.")
with np.printoptions(**PRINT_OPTIONS):
print(f"Corresponding point: {x}.")