150 lines
5.3 KiB
Python
150 lines
5.3 KiB
Python
import sys
|
|
from numpy.testing import (
|
|
assert_, assert_array_equal, assert_raises,
|
|
)
|
|
from numpy import random
|
|
import numpy as np
|
|
|
|
|
|
class TestRegression:
|
|
|
|
def test_VonMises_range(self):
|
|
# Make sure generated random variables are in [-pi, pi].
|
|
# Regression test for ticket #986.
|
|
for mu in np.linspace(-7., 7., 5):
|
|
r = random.mtrand.vonmises(mu, 1, 50)
|
|
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
|
|
|
def test_hypergeometric_range(self):
|
|
# Test for ticket #921
|
|
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
|
|
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
|
|
|
|
# Test for ticket #5623
|
|
args = [
|
|
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
|
]
|
|
is_64bits = sys.maxsize > 2**32
|
|
if is_64bits and sys.platform != 'win32':
|
|
# Check for 64-bit systems
|
|
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
|
for arg in args:
|
|
assert_(np.random.hypergeometric(*arg) > 0)
|
|
|
|
def test_logseries_convergence(self):
|
|
# Test for ticket #923
|
|
N = 1000
|
|
np.random.seed(0)
|
|
rvsn = np.random.logseries(0.8, size=N)
|
|
# these two frequency counts should be close to theoretical
|
|
# numbers with this large sample
|
|
# theoretical large N result is 0.49706795
|
|
freq = np.sum(rvsn == 1) / N
|
|
msg = f'Frequency was {freq:f}, should be > 0.45'
|
|
assert_(freq > 0.45, msg)
|
|
# theoretical large N result is 0.19882718
|
|
freq = np.sum(rvsn == 2) / N
|
|
msg = f'Frequency was {freq:f}, should be < 0.23'
|
|
assert_(freq < 0.23, msg)
|
|
|
|
def test_shuffle_mixed_dimension(self):
|
|
# Test for trac ticket #2074
|
|
for t in [[1, 2, 3, None],
|
|
[(1, 1), (2, 2), (3, 3), None],
|
|
[1, (2, 2), (3, 3), None],
|
|
[(1, 1), 2, 3, None]]:
|
|
np.random.seed(12345)
|
|
shuffled = list(t)
|
|
random.shuffle(shuffled)
|
|
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
|
|
assert_array_equal(np.array(shuffled, dtype=object), expected)
|
|
|
|
def test_call_within_randomstate(self):
|
|
# Check that custom RandomState does not call into global state
|
|
m = np.random.RandomState()
|
|
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
|
for i in range(3):
|
|
np.random.seed(i)
|
|
m.seed(4321)
|
|
# If m.state is not honored, the result will change
|
|
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
|
|
|
def test_multivariate_normal_size_types(self):
|
|
# Test for multivariate_normal issue with 'size' argument.
|
|
# Check that the multivariate_normal size argument can be a
|
|
# numpy integer.
|
|
np.random.multivariate_normal([0], [[0]], size=1)
|
|
np.random.multivariate_normal([0], [[0]], size=np.int_(1))
|
|
np.random.multivariate_normal([0], [[0]], size=np.int64(1))
|
|
|
|
def test_beta_small_parameters(self):
|
|
# Test that beta with small a and b parameters does not produce
|
|
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
|
np.random.seed(1234567890)
|
|
x = np.random.beta(0.0001, 0.0001, size=100)
|
|
assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
|
|
|
|
def test_choice_sum_of_probs_tolerance(self):
|
|
# The sum of probs should be 1.0 with some tolerance.
|
|
# For low precision dtypes the tolerance was too tight.
|
|
# See numpy github issue 6123.
|
|
np.random.seed(1234)
|
|
a = [1, 2, 3]
|
|
counts = [4, 4, 2]
|
|
for dt in np.float16, np.float32, np.float64:
|
|
probs = np.array(counts, dtype=dt) / sum(counts)
|
|
c = np.random.choice(a, p=probs)
|
|
assert_(c in a)
|
|
assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
|
|
|
|
def test_shuffle_of_array_of_different_length_strings(self):
|
|
# Test that permuting an array of different length strings
|
|
# will not cause a segfault on garbage collection
|
|
# Tests gh-7710
|
|
np.random.seed(1234)
|
|
|
|
a = np.array(['a', 'a' * 1000])
|
|
|
|
for _ in range(100):
|
|
np.random.shuffle(a)
|
|
|
|
# Force Garbage Collection - should not segfault.
|
|
import gc
|
|
gc.collect()
|
|
|
|
def test_shuffle_of_array_of_objects(self):
|
|
# Test that permuting an array of objects will not cause
|
|
# a segfault on garbage collection.
|
|
# See gh-7719
|
|
np.random.seed(1234)
|
|
a = np.array([np.arange(1), np.arange(4)], dtype=object)
|
|
|
|
for _ in range(1000):
|
|
np.random.shuffle(a)
|
|
|
|
# Force Garbage Collection - should not segfault.
|
|
import gc
|
|
gc.collect()
|
|
|
|
def test_permutation_subclass(self):
|
|
class N(np.ndarray):
|
|
pass
|
|
|
|
np.random.seed(1)
|
|
orig = np.arange(3).view(N)
|
|
perm = np.random.permutation(orig)
|
|
assert_array_equal(perm, np.array([0, 2, 1]))
|
|
assert_array_equal(orig, np.arange(3).view(N))
|
|
|
|
class M:
|
|
a = np.arange(5)
|
|
|
|
def __array__(self, dtype=None, copy=None):
|
|
return self.a
|
|
|
|
np.random.seed(1)
|
|
m = M()
|
|
perm = np.random.permutation(m)
|
|
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
|
assert_array_equal(m.__array__(), np.arange(5))
|