287 lines
9.6 KiB
Python
287 lines
9.6 KiB
Python
"""
|
|
Docstrings are another source of information for functions and classes.
|
|
:mod:`jedi.inference.dynamic_params` tries to find all executions of functions,
|
|
while the docstring parsing is much easier. There are three different types of
|
|
docstrings that |jedi| understands:
|
|
|
|
- `Sphinx <http://sphinx-doc.org/markup/desc.html#info-field-lists>`_
|
|
- `Epydoc <http://epydoc.sourceforge.net/manual-fields.html>`_
|
|
- `Numpydoc <https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt>`_
|
|
|
|
For example, the sphinx annotation ``:type foo: str`` clearly states that the
|
|
type of ``foo`` is ``str``.
|
|
|
|
As an addition to parameter searching, this module also provides return
|
|
annotations.
|
|
"""
|
|
|
|
import re
|
|
import warnings
|
|
|
|
from parso import parse, ParserSyntaxError
|
|
|
|
from jedi import debug
|
|
from jedi.inference.cache import inference_state_method_cache
|
|
from jedi.inference.base_value import iterator_to_value_set, ValueSet, \
|
|
NO_VALUES
|
|
from jedi.inference.lazy_value import LazyKnownValues
|
|
|
|
|
|
DOCSTRING_PARAM_PATTERNS = [
|
|
r'\s*:type\s+%s:\s*([^\n]+)', # Sphinx
|
|
r'\s*:param\s+(\w+)\s+%s:[^\n]*', # Sphinx param with type
|
|
r'\s*@type\s+%s:\s*([^\n]+)', # Epydoc
|
|
]
|
|
|
|
DOCSTRING_RETURN_PATTERNS = [
|
|
re.compile(r'\s*:rtype:\s*([^\n]+)', re.M), # Sphinx
|
|
re.compile(r'\s*@rtype:\s*([^\n]+)', re.M), # Epydoc
|
|
]
|
|
|
|
REST_ROLE_PATTERN = re.compile(r':[^`]+:`([^`]+)`')
|
|
|
|
|
|
_numpy_doc_string_cache = None
|
|
|
|
|
|
def _get_numpy_doc_string_cls():
|
|
global _numpy_doc_string_cache
|
|
if isinstance(_numpy_doc_string_cache, (ImportError, SyntaxError)):
|
|
raise _numpy_doc_string_cache
|
|
from numpydoc.docscrape import NumpyDocString # type: ignore[import]
|
|
_numpy_doc_string_cache = NumpyDocString
|
|
return _numpy_doc_string_cache
|
|
|
|
|
|
def _search_param_in_numpydocstr(docstr, param_str):
|
|
"""Search `docstr` (in numpydoc format) for type(-s) of `param_str`."""
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
try:
|
|
# This is a non-public API. If it ever changes we should be
|
|
# prepared and return gracefully.
|
|
params = _get_numpy_doc_string_cls()(docstr)._parsed_data['Parameters']
|
|
except Exception:
|
|
return []
|
|
for p_name, p_type, p_descr in params:
|
|
if p_name == param_str:
|
|
m = re.match(r'([^,]+(,[^,]+)*?)(,[ ]*optional)?$', p_type)
|
|
if m:
|
|
p_type = m.group(1)
|
|
return list(_expand_typestr(p_type))
|
|
return []
|
|
|
|
|
|
def _search_return_in_numpydocstr(docstr):
|
|
"""
|
|
Search `docstr` (in numpydoc format) for type(-s) of function returns.
|
|
"""
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
try:
|
|
doc = _get_numpy_doc_string_cls()(docstr)
|
|
except Exception:
|
|
return
|
|
try:
|
|
# This is a non-public API. If it ever changes we should be
|
|
# prepared and return gracefully.
|
|
returns = doc._parsed_data['Returns']
|
|
returns += doc._parsed_data['Yields']
|
|
except Exception:
|
|
return
|
|
for r_name, r_type, r_descr in returns:
|
|
# Return names are optional and if so the type is in the name
|
|
if not r_type:
|
|
r_type = r_name
|
|
yield from _expand_typestr(r_type)
|
|
|
|
|
|
def _expand_typestr(type_str):
|
|
"""
|
|
Attempts to interpret the possible types in `type_str`
|
|
"""
|
|
# Check if alternative types are specified with 'or'
|
|
if re.search(r'\bor\b', type_str):
|
|
for t in type_str.split('or'):
|
|
yield t.split('of')[0].strip()
|
|
# Check if like "list of `type`" and set type to list
|
|
elif re.search(r'\bof\b', type_str):
|
|
yield type_str.split('of')[0]
|
|
# Check if type has is a set of valid literal values eg: {'C', 'F', 'A'}
|
|
elif type_str.startswith('{'):
|
|
node = parse(type_str, version='3.7').children[0]
|
|
if node.type == 'atom':
|
|
for leaf in getattr(node.children[1], "children", []):
|
|
if leaf.type == 'number':
|
|
if '.' in leaf.value:
|
|
yield 'float'
|
|
else:
|
|
yield 'int'
|
|
elif leaf.type == 'string':
|
|
if 'b' in leaf.string_prefix.lower():
|
|
yield 'bytes'
|
|
else:
|
|
yield 'str'
|
|
# Ignore everything else.
|
|
|
|
# Otherwise just work with what we have.
|
|
else:
|
|
yield type_str
|
|
|
|
|
|
def _search_param_in_docstr(docstr, param_str):
|
|
"""
|
|
Search `docstr` for type(-s) of `param_str`.
|
|
|
|
>>> _search_param_in_docstr(':type param: int', 'param')
|
|
['int']
|
|
>>> _search_param_in_docstr('@type param: int', 'param')
|
|
['int']
|
|
>>> _search_param_in_docstr(
|
|
... ':type param: :class:`threading.Thread`', 'param')
|
|
['threading.Thread']
|
|
>>> bool(_search_param_in_docstr('no document', 'param'))
|
|
False
|
|
>>> _search_param_in_docstr(':param int param: some description', 'param')
|
|
['int']
|
|
|
|
"""
|
|
# look at #40 to see definitions of those params
|
|
patterns = [re.compile(p % re.escape(param_str))
|
|
for p in DOCSTRING_PARAM_PATTERNS]
|
|
for pattern in patterns:
|
|
match = pattern.search(docstr)
|
|
if match:
|
|
return [_strip_rst_role(match.group(1))]
|
|
|
|
return _search_param_in_numpydocstr(docstr, param_str)
|
|
|
|
|
|
def _strip_rst_role(type_str):
|
|
"""
|
|
Strip off the part looks like a ReST role in `type_str`.
|
|
|
|
>>> _strip_rst_role(':class:`ClassName`') # strip off :class:
|
|
'ClassName'
|
|
>>> _strip_rst_role(':py:obj:`module.Object`') # works with domain
|
|
'module.Object'
|
|
>>> _strip_rst_role('ClassName') # do nothing when not ReST role
|
|
'ClassName'
|
|
|
|
See also:
|
|
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
|
|
|
|
"""
|
|
match = REST_ROLE_PATTERN.match(type_str)
|
|
if match:
|
|
return match.group(1)
|
|
else:
|
|
return type_str
|
|
|
|
|
|
def _infer_for_statement_string(module_context, string):
|
|
if string is None:
|
|
return []
|
|
|
|
potential_imports = re.findall(r'((?:\w+\.)*\w+)\.', string)
|
|
# Try to import module part in dotted name.
|
|
# (e.g., 'threading' in 'threading.Thread').
|
|
imports = "\n".join(f"import {p}" for p in potential_imports)
|
|
string = f'{imports}\n{string}'
|
|
|
|
debug.dbg('Parse docstring code %s', string, color='BLUE')
|
|
grammar = module_context.inference_state.grammar
|
|
try:
|
|
module = grammar.parse(string, error_recovery=False)
|
|
except ParserSyntaxError:
|
|
return []
|
|
try:
|
|
# It's not the last item, because that's an end marker.
|
|
stmt = module.children[-2]
|
|
except (AttributeError, IndexError):
|
|
return []
|
|
|
|
if stmt.type not in ('name', 'atom', 'atom_expr'):
|
|
return []
|
|
|
|
# Here we basically use a fake module that also uses the filters in
|
|
# the actual module.
|
|
from jedi.inference.docstring_utils import DocstringModule
|
|
m = DocstringModule(
|
|
in_module_context=module_context,
|
|
inference_state=module_context.inference_state,
|
|
module_node=module,
|
|
code_lines=[],
|
|
)
|
|
return list(_execute_types_in_stmt(m.as_context(), stmt))
|
|
|
|
|
|
def _execute_types_in_stmt(module_context, stmt):
|
|
"""
|
|
Executing all types or general elements that we find in a statement. This
|
|
doesn't include tuple, list and dict literals, because the stuff they
|
|
contain is executed. (Used as type information).
|
|
"""
|
|
definitions = module_context.infer_node(stmt)
|
|
return ValueSet.from_sets(
|
|
_execute_array_values(module_context.inference_state, d)
|
|
for d in definitions
|
|
)
|
|
|
|
|
|
def _execute_array_values(inference_state, array):
|
|
"""
|
|
Tuples indicate that there's not just one return value, but the listed
|
|
ones. `(str, int)` means that it returns a tuple with both types.
|
|
"""
|
|
from jedi.inference.value.iterable import SequenceLiteralValue, FakeTuple, FakeList
|
|
if isinstance(array, SequenceLiteralValue) and array.array_type in ('tuple', 'list'):
|
|
values = []
|
|
for lazy_value in array.py__iter__():
|
|
objects = ValueSet.from_sets(
|
|
_execute_array_values(inference_state, typ)
|
|
for typ in lazy_value.infer()
|
|
)
|
|
values.append(LazyKnownValues(objects))
|
|
cls = FakeTuple if array.array_type == 'tuple' else FakeList
|
|
return {cls(inference_state, values)}
|
|
else:
|
|
return array.execute_annotation()
|
|
|
|
|
|
@inference_state_method_cache()
|
|
def infer_param(function_value, param):
|
|
def infer_docstring(docstring):
|
|
return ValueSet(
|
|
p
|
|
for param_str in _search_param_in_docstr(docstring, param.name.value)
|
|
for p in _infer_for_statement_string(module_context, param_str)
|
|
)
|
|
module_context = function_value.get_root_context()
|
|
func = param.get_parent_function()
|
|
if func.type == 'lambdef':
|
|
return NO_VALUES
|
|
|
|
types = infer_docstring(function_value.py__doc__())
|
|
if function_value.is_bound_method() \
|
|
and function_value.py__name__() == '__init__':
|
|
types |= infer_docstring(function_value.class_context.py__doc__())
|
|
|
|
debug.dbg('Found param types for docstring: %s', types, color='BLUE')
|
|
return types
|
|
|
|
|
|
@inference_state_method_cache()
|
|
@iterator_to_value_set
|
|
def infer_return_types(function_value):
|
|
def search_return_in_docstr(code):
|
|
for p in DOCSTRING_RETURN_PATTERNS:
|
|
match = p.search(code)
|
|
if match:
|
|
yield _strip_rst_role(match.group(1))
|
|
# Check for numpy style return hint
|
|
yield from _search_return_in_numpydocstr(code)
|
|
|
|
for type_str in search_return_in_docstr(function_value.py__doc__()):
|
|
yield from _infer_for_statement_string(function_value.get_root_context(), type_str)
|