AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/fontTools/misc/psCharStrings.py
2024-10-02 22:15:59 +04:00

1497 lines
42 KiB
Python

"""psCharStrings.py -- module implementing various kinds of CharStrings:
CFF dictionary data and Type1/Type2 CharStrings.
"""
from fontTools.misc.fixedTools import (
fixedToFloat,
floatToFixed,
floatToFixedToStr,
strToFixedToFloat,
)
from fontTools.misc.textTools import bytechr, byteord, bytesjoin, strjoin
from fontTools.pens.boundsPen import BoundsPen
import struct
import logging
log = logging.getLogger(__name__)
def read_operator(self, b0, data, index):
if b0 == 12:
op = (b0, byteord(data[index]))
index = index + 1
else:
op = b0
try:
operator = self.operators[op]
except KeyError:
return None, index
value = self.handle_operator(operator)
return value, index
def read_byte(self, b0, data, index):
return b0 - 139, index
def read_smallInt1(self, b0, data, index):
b1 = byteord(data[index])
return (b0 - 247) * 256 + b1 + 108, index + 1
def read_smallInt2(self, b0, data, index):
b1 = byteord(data[index])
return -(b0 - 251) * 256 - b1 - 108, index + 1
def read_shortInt(self, b0, data, index):
(value,) = struct.unpack(">h", data[index : index + 2])
return value, index + 2
def read_longInt(self, b0, data, index):
(value,) = struct.unpack(">l", data[index : index + 4])
return value, index + 4
def read_fixed1616(self, b0, data, index):
(value,) = struct.unpack(">l", data[index : index + 4])
return fixedToFloat(value, precisionBits=16), index + 4
def read_reserved(self, b0, data, index):
assert NotImplementedError
return NotImplemented, index
def read_realNumber(self, b0, data, index):
number = ""
while True:
b = byteord(data[index])
index = index + 1
nibble0 = (b & 0xF0) >> 4
nibble1 = b & 0x0F
if nibble0 == 0xF:
break
number = number + realNibbles[nibble0]
if nibble1 == 0xF:
break
number = number + realNibbles[nibble1]
return float(number), index
t1OperandEncoding = [None] * 256
t1OperandEncoding[0:32] = (32) * [read_operator]
t1OperandEncoding[32:247] = (247 - 32) * [read_byte]
t1OperandEncoding[247:251] = (251 - 247) * [read_smallInt1]
t1OperandEncoding[251:255] = (255 - 251) * [read_smallInt2]
t1OperandEncoding[255] = read_longInt
assert len(t1OperandEncoding) == 256
t2OperandEncoding = t1OperandEncoding[:]
t2OperandEncoding[28] = read_shortInt
t2OperandEncoding[255] = read_fixed1616
cffDictOperandEncoding = t2OperandEncoding[:]
cffDictOperandEncoding[29] = read_longInt
cffDictOperandEncoding[30] = read_realNumber
cffDictOperandEncoding[255] = read_reserved
realNibbles = [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
".",
"E",
"E-",
None,
"-",
]
realNibblesDict = {v: i for i, v in enumerate(realNibbles)}
maxOpStack = 193
def buildOperatorDict(operatorList):
oper = {}
opc = {}
for item in operatorList:
if len(item) == 2:
oper[item[0]] = item[1]
else:
oper[item[0]] = item[1:]
if isinstance(item[0], tuple):
opc[item[1]] = item[0]
else:
opc[item[1]] = (item[0],)
return oper, opc
t2Operators = [
# opcode name
(1, "hstem"),
(3, "vstem"),
(4, "vmoveto"),
(5, "rlineto"),
(6, "hlineto"),
(7, "vlineto"),
(8, "rrcurveto"),
(10, "callsubr"),
(11, "return"),
(14, "endchar"),
(15, "vsindex"),
(16, "blend"),
(18, "hstemhm"),
(19, "hintmask"),
(20, "cntrmask"),
(21, "rmoveto"),
(22, "hmoveto"),
(23, "vstemhm"),
(24, "rcurveline"),
(25, "rlinecurve"),
(26, "vvcurveto"),
(27, "hhcurveto"),
# (28, 'shortint'), # not really an operator
(29, "callgsubr"),
(30, "vhcurveto"),
(31, "hvcurveto"),
((12, 0), "ignore"), # dotsection. Yes, there a few very early OTF/CFF
# fonts with this deprecated operator. Just ignore it.
((12, 3), "and"),
((12, 4), "or"),
((12, 5), "not"),
((12, 8), "store"),
((12, 9), "abs"),
((12, 10), "add"),
((12, 11), "sub"),
((12, 12), "div"),
((12, 13), "load"),
((12, 14), "neg"),
((12, 15), "eq"),
((12, 18), "drop"),
((12, 20), "put"),
((12, 21), "get"),
((12, 22), "ifelse"),
((12, 23), "random"),
((12, 24), "mul"),
((12, 26), "sqrt"),
((12, 27), "dup"),
((12, 28), "exch"),
((12, 29), "index"),
((12, 30), "roll"),
((12, 34), "hflex"),
((12, 35), "flex"),
((12, 36), "hflex1"),
((12, 37), "flex1"),
]
def getIntEncoder(format):
if format == "cff":
twoByteOp = bytechr(28)
fourByteOp = bytechr(29)
elif format == "t1":
twoByteOp = None
fourByteOp = bytechr(255)
else:
assert format == "t2"
twoByteOp = bytechr(28)
fourByteOp = None
def encodeInt(
value,
fourByteOp=fourByteOp,
bytechr=bytechr,
pack=struct.pack,
unpack=struct.unpack,
twoByteOp=twoByteOp,
):
if -107 <= value <= 107:
code = bytechr(value + 139)
elif 108 <= value <= 1131:
value = value - 108
code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF)
elif -1131 <= value <= -108:
value = -value - 108
code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF)
elif twoByteOp is not None and -32768 <= value <= 32767:
code = twoByteOp + pack(">h", value)
elif fourByteOp is None:
# Backwards compatible hack: due to a previous bug in FontTools,
# 16.16 fixed numbers were written out as 4-byte ints. When
# these numbers were small, they were wrongly written back as
# small ints instead of 4-byte ints, breaking round-tripping.
# This here workaround doesn't do it any better, since we can't
# distinguish anymore between small ints that were supposed to
# be small fixed numbers and small ints that were just small
# ints. Hence the warning.
log.warning(
"4-byte T2 number got passed to the "
"IntType handler. This should happen only when reading in "
"old XML files.\n"
)
code = bytechr(255) + pack(">l", value)
else:
code = fourByteOp + pack(">l", value)
return code
return encodeInt
encodeIntCFF = getIntEncoder("cff")
encodeIntT1 = getIntEncoder("t1")
encodeIntT2 = getIntEncoder("t2")
def encodeFixed(f, pack=struct.pack):
"""For T2 only"""
value = floatToFixed(f, precisionBits=16)
if value & 0xFFFF == 0: # check if the fractional part is zero
return encodeIntT2(value >> 16) # encode only the integer part
else:
return b"\xff" + pack(">l", value) # encode the entire fixed point value
realZeroBytes = bytechr(30) + bytechr(0xF)
def encodeFloat(f):
# For CFF only, used in cffLib
if f == 0.0: # 0.0 == +0.0 == -0.0
return realZeroBytes
# Note: 14 decimal digits seems to be the limitation for CFF real numbers
# in macOS. However, we use 8 here to match the implementation of AFDKO.
s = "%.8G" % f
if s[:2] == "0.":
s = s[1:]
elif s[:3] == "-0.":
s = "-" + s[2:]
elif s.endswith("000"):
significantDigits = s.rstrip("0")
s = "%sE%d" % (significantDigits, len(s) - len(significantDigits))
else:
dotIndex = s.find(".")
eIndex = s.find("E")
if dotIndex != -1 and eIndex != -1:
integerPart = s[:dotIndex]
fractionalPart = s[dotIndex + 1 : eIndex]
exponent = int(s[eIndex + 1 :])
newExponent = exponent - len(fractionalPart)
if newExponent == 1:
s = "%s%s0" % (integerPart, fractionalPart)
else:
s = "%s%sE%d" % (integerPart, fractionalPart, newExponent)
if s.startswith((".0", "-.0")):
sign, s = s.split(".", 1)
s = "%s%sE-%d" % (sign, s.lstrip("0"), len(s))
nibbles = []
while s:
c = s[0]
s = s[1:]
if c == "E":
c2 = s[:1]
if c2 == "-":
s = s[1:]
c = "E-"
elif c2 == "+":
s = s[1:]
if s.startswith("0"):
s = s[1:]
nibbles.append(realNibblesDict[c])
nibbles.append(0xF)
if len(nibbles) % 2:
nibbles.append(0xF)
d = bytechr(30)
for i in range(0, len(nibbles), 2):
d = d + bytechr(nibbles[i] << 4 | nibbles[i + 1])
return d
class CharStringCompileError(Exception):
pass
class SimpleT2Decompiler(object):
def __init__(self, localSubrs, globalSubrs, private=None, blender=None):
self.localSubrs = localSubrs
self.localBias = calcSubrBias(localSubrs)
self.globalSubrs = globalSubrs
self.globalBias = calcSubrBias(globalSubrs)
self.private = private
self.blender = blender
self.reset()
def reset(self):
self.callingStack = []
self.operandStack = []
self.hintCount = 0
self.hintMaskBytes = 0
self.numRegions = 0
self.vsIndex = 0
def execute(self, charString):
self.callingStack.append(charString)
needsDecompilation = charString.needsDecompilation()
if needsDecompilation:
program = []
pushToProgram = program.append
else:
pushToProgram = lambda x: None
pushToStack = self.operandStack.append
index = 0
while True:
token, isOperator, index = charString.getToken(index)
if token is None:
break # we're done!
pushToProgram(token)
if isOperator:
handlerName = "op_" + token
handler = getattr(self, handlerName, None)
if handler is not None:
rv = handler(index)
if rv:
hintMaskBytes, index = rv
pushToProgram(hintMaskBytes)
else:
self.popall()
else:
pushToStack(token)
if needsDecompilation:
charString.setProgram(program)
del self.callingStack[-1]
def pop(self):
value = self.operandStack[-1]
del self.operandStack[-1]
return value
def popall(self):
stack = self.operandStack[:]
self.operandStack[:] = []
return stack
def push(self, value):
self.operandStack.append(value)
def op_return(self, index):
if self.operandStack:
pass
def op_endchar(self, index):
pass
def op_ignore(self, index):
pass
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.localSubrs[subrIndex + self.localBias]
self.execute(subr)
def op_callgsubr(self, index):
subrIndex = self.pop()
subr = self.globalSubrs[subrIndex + self.globalBias]
self.execute(subr)
def op_hstem(self, index):
self.countHints()
def op_vstem(self, index):
self.countHints()
def op_hstemhm(self, index):
self.countHints()
def op_vstemhm(self, index):
self.countHints()
def op_hintmask(self, index):
if not self.hintMaskBytes:
self.countHints()
self.hintMaskBytes = (self.hintCount + 7) // 8
hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
return hintMaskBytes, index
op_cntrmask = op_hintmask
def countHints(self):
args = self.popall()
self.hintCount = self.hintCount + len(args) // 2
# misc
def op_and(self, index):
raise NotImplementedError
def op_or(self, index):
raise NotImplementedError
def op_not(self, index):
raise NotImplementedError
def op_store(self, index):
raise NotImplementedError
def op_abs(self, index):
raise NotImplementedError
def op_add(self, index):
raise NotImplementedError
def op_sub(self, index):
raise NotImplementedError
def op_div(self, index):
raise NotImplementedError
def op_load(self, index):
raise NotImplementedError
def op_neg(self, index):
raise NotImplementedError
def op_eq(self, index):
raise NotImplementedError
def op_drop(self, index):
raise NotImplementedError
def op_put(self, index):
raise NotImplementedError
def op_get(self, index):
raise NotImplementedError
def op_ifelse(self, index):
raise NotImplementedError
def op_random(self, index):
raise NotImplementedError
def op_mul(self, index):
raise NotImplementedError
def op_sqrt(self, index):
raise NotImplementedError
def op_dup(self, index):
raise NotImplementedError
def op_exch(self, index):
raise NotImplementedError
def op_index(self, index):
raise NotImplementedError
def op_roll(self, index):
raise NotImplementedError
def op_blend(self, index):
if self.numRegions == 0:
self.numRegions = self.private.getNumRegions()
numBlends = self.pop()
numOps = numBlends * (self.numRegions + 1)
if self.blender is None:
del self.operandStack[
-(numOps - numBlends) :
] # Leave the default operands on the stack.
else:
argi = len(self.operandStack) - numOps
end_args = tuplei = argi + numBlends
while argi < end_args:
next_ti = tuplei + self.numRegions
deltas = self.operandStack[tuplei:next_ti]
delta = self.blender(self.vsIndex, deltas)
self.operandStack[argi] += delta
tuplei = next_ti
argi += 1
self.operandStack[end_args:] = []
def op_vsindex(self, index):
vi = self.pop()
self.vsIndex = vi
self.numRegions = self.private.getNumRegions(vi)
t1Operators = [
# opcode name
(1, "hstem"),
(3, "vstem"),
(4, "vmoveto"),
(5, "rlineto"),
(6, "hlineto"),
(7, "vlineto"),
(8, "rrcurveto"),
(9, "closepath"),
(10, "callsubr"),
(11, "return"),
(13, "hsbw"),
(14, "endchar"),
(21, "rmoveto"),
(22, "hmoveto"),
(30, "vhcurveto"),
(31, "hvcurveto"),
((12, 0), "dotsection"),
((12, 1), "vstem3"),
((12, 2), "hstem3"),
((12, 6), "seac"),
((12, 7), "sbw"),
((12, 12), "div"),
((12, 16), "callothersubr"),
((12, 17), "pop"),
((12, 33), "setcurrentpoint"),
]
class T2WidthExtractor(SimpleT2Decompiler):
def __init__(
self,
localSubrs,
globalSubrs,
nominalWidthX,
defaultWidthX,
private=None,
blender=None,
):
SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private, blender)
self.nominalWidthX = nominalWidthX
self.defaultWidthX = defaultWidthX
def reset(self):
SimpleT2Decompiler.reset(self)
self.gotWidth = 0
self.width = 0
def popallWidth(self, evenOdd=0):
args = self.popall()
if not self.gotWidth:
if evenOdd ^ (len(args) % 2):
# For CFF2 charstrings, this should never happen
assert (
self.defaultWidthX is not None
), "CFF2 CharStrings must not have an initial width value"
self.width = self.nominalWidthX + args[0]
args = args[1:]
else:
self.width = self.defaultWidthX
self.gotWidth = 1
return args
def countHints(self):
args = self.popallWidth()
self.hintCount = self.hintCount + len(args) // 2
def op_rmoveto(self, index):
self.popallWidth()
def op_hmoveto(self, index):
self.popallWidth(1)
def op_vmoveto(self, index):
self.popallWidth(1)
def op_endchar(self, index):
self.popallWidth()
class T2OutlineExtractor(T2WidthExtractor):
def __init__(
self,
pen,
localSubrs,
globalSubrs,
nominalWidthX,
defaultWidthX,
private=None,
blender=None,
):
T2WidthExtractor.__init__(
self,
localSubrs,
globalSubrs,
nominalWidthX,
defaultWidthX,
private,
blender,
)
self.pen = pen
self.subrLevel = 0
def reset(self):
T2WidthExtractor.reset(self)
self.currentPoint = (0, 0)
self.sawMoveTo = 0
self.subrLevel = 0
def execute(self, charString):
self.subrLevel += 1
super().execute(charString)
self.subrLevel -= 1
if self.subrLevel == 0:
self.endPath()
def _nextPoint(self, point):
x, y = self.currentPoint
point = x + point[0], y + point[1]
self.currentPoint = point
return point
def rMoveTo(self, point):
self.pen.moveTo(self._nextPoint(point))
self.sawMoveTo = 1
def rLineTo(self, point):
if not self.sawMoveTo:
self.rMoveTo((0, 0))
self.pen.lineTo(self._nextPoint(point))
def rCurveTo(self, pt1, pt2, pt3):
if not self.sawMoveTo:
self.rMoveTo((0, 0))
nextPoint = self._nextPoint
self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3))
def closePath(self):
if self.sawMoveTo:
self.pen.closePath()
self.sawMoveTo = 0
def endPath(self):
# In T2 there are no open paths, so always do a closePath when
# finishing a sub path. We avoid spurious calls to closePath()
# because its a real T1 op we're emulating in T2 whereas
# endPath() is just a means to that emulation
if self.sawMoveTo:
self.closePath()
#
# hint operators
#
# def op_hstem(self, index):
# self.countHints()
# def op_vstem(self, index):
# self.countHints()
# def op_hstemhm(self, index):
# self.countHints()
# def op_vstemhm(self, index):
# self.countHints()
# def op_hintmask(self, index):
# self.countHints()
# def op_cntrmask(self, index):
# self.countHints()
#
# path constructors, moveto
#
def op_rmoveto(self, index):
self.endPath()
self.rMoveTo(self.popallWidth())
def op_hmoveto(self, index):
self.endPath()
self.rMoveTo((self.popallWidth(1)[0], 0))
def op_vmoveto(self, index):
self.endPath()
self.rMoveTo((0, self.popallWidth(1)[0]))
def op_endchar(self, index):
self.endPath()
args = self.popallWidth()
if args:
from fontTools.encodings.StandardEncoding import StandardEncoding
# endchar can do seac accent bulding; The T2 spec says it's deprecated,
# but recent software that shall remain nameless does output it.
adx, ady, bchar, achar = args
baseGlyph = StandardEncoding[bchar]
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
accentGlyph = StandardEncoding[achar]
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
#
# path constructors, lines
#
def op_rlineto(self, index):
args = self.popall()
for i in range(0, len(args), 2):
point = args[i : i + 2]
self.rLineTo(point)
def op_hlineto(self, index):
self.alternatingLineto(1)
def op_vlineto(self, index):
self.alternatingLineto(0)
#
# path constructors, curves
#
def op_rrcurveto(self, index):
"""{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
args = self.popall()
for i in range(0, len(args), 6):
(
dxa,
dya,
dxb,
dyb,
dxc,
dyc,
) = args[i : i + 6]
self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc))
def op_rcurveline(self, index):
"""{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
args = self.popall()
for i in range(0, len(args) - 2, 6):
dxb, dyb, dxc, dyc, dxd, dyd = args[i : i + 6]
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
self.rLineTo(args[-2:])
def op_rlinecurve(self, index):
"""{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
args = self.popall()
lineArgs = args[:-6]
for i in range(0, len(lineArgs), 2):
self.rLineTo(lineArgs[i : i + 2])
dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
def op_vvcurveto(self, index):
"dx1? {dya dxb dyb dyc}+ vvcurveto"
args = self.popall()
if len(args) % 2:
dx1 = args[0]
args = args[1:]
else:
dx1 = 0
for i in range(0, len(args), 4):
dya, dxb, dyb, dyc = args[i : i + 4]
self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc))
dx1 = 0
def op_hhcurveto(self, index):
"""dy1? {dxa dxb dyb dxc}+ hhcurveto"""
args = self.popall()
if len(args) % 2:
dy1 = args[0]
args = args[1:]
else:
dy1 = 0
for i in range(0, len(args), 4):
dxa, dxb, dyb, dxc = args[i : i + 4]
self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0))
dy1 = 0
def op_vhcurveto(self, index):
"""dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
{dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
"""
args = self.popall()
while args:
args = self.vcurveto(args)
if args:
args = self.hcurveto(args)
def op_hvcurveto(self, index):
"""dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
{dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
"""
args = self.popall()
while args:
args = self.hcurveto(args)
if args:
args = self.vcurveto(args)
#
# path constructors, flex
#
def op_hflex(self, index):
dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall()
dy1 = dy3 = dy4 = dy6 = 0
dy5 = -dy2
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_flex(self, index):
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall()
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_hflex1(self, index):
dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall()
dy3 = dy4 = 0
dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5)
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
def op_flex1(self, index):
dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall()
dx = dx1 + dx2 + dx3 + dx4 + dx5
dy = dy1 + dy2 + dy3 + dy4 + dy5
if abs(dx) > abs(dy):
dx6 = d6
dy6 = -dy
else:
dx6 = -dx
dy6 = d6
self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))
# misc
def op_and(self, index):
raise NotImplementedError
def op_or(self, index):
raise NotImplementedError
def op_not(self, index):
raise NotImplementedError
def op_store(self, index):
raise NotImplementedError
def op_abs(self, index):
raise NotImplementedError
def op_add(self, index):
raise NotImplementedError
def op_sub(self, index):
raise NotImplementedError
def op_div(self, index):
num2 = self.pop()
num1 = self.pop()
d1 = num1 // num2
d2 = num1 / num2
if d1 == d2:
self.push(d1)
else:
self.push(d2)
def op_load(self, index):
raise NotImplementedError
def op_neg(self, index):
raise NotImplementedError
def op_eq(self, index):
raise NotImplementedError
def op_drop(self, index):
raise NotImplementedError
def op_put(self, index):
raise NotImplementedError
def op_get(self, index):
raise NotImplementedError
def op_ifelse(self, index):
raise NotImplementedError
def op_random(self, index):
raise NotImplementedError
def op_mul(self, index):
raise NotImplementedError
def op_sqrt(self, index):
raise NotImplementedError
def op_dup(self, index):
raise NotImplementedError
def op_exch(self, index):
raise NotImplementedError
def op_index(self, index):
raise NotImplementedError
def op_roll(self, index):
raise NotImplementedError
#
# miscellaneous helpers
#
def alternatingLineto(self, isHorizontal):
args = self.popall()
for arg in args:
if isHorizontal:
point = (arg, 0)
else:
point = (0, arg)
self.rLineTo(point)
isHorizontal = not isHorizontal
def vcurveto(self, args):
dya, dxb, dyb, dxc = args[:4]
args = args[4:]
if len(args) == 1:
dyc = args[0]
args = []
else:
dyc = 0
self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc))
return args
def hcurveto(self, args):
dxa, dxb, dyb, dyc = args[:4]
args = args[4:]
if len(args) == 1:
dxc = args[0]
args = []
else:
dxc = 0
self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc))
return args
class T1OutlineExtractor(T2OutlineExtractor):
def __init__(self, pen, subrs):
self.pen = pen
self.subrs = subrs
self.reset()
def reset(self):
self.flexing = 0
self.width = 0
self.sbx = 0
T2OutlineExtractor.reset(self)
def endPath(self):
if self.sawMoveTo:
self.pen.endPath()
self.sawMoveTo = 0
def popallWidth(self, evenOdd=0):
return self.popall()
def exch(self):
stack = self.operandStack
stack[-1], stack[-2] = stack[-2], stack[-1]
#
# path constructors
#
def op_rmoveto(self, index):
if self.flexing:
return
self.endPath()
self.rMoveTo(self.popall())
def op_hmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
return
self.endPath()
self.rMoveTo((self.popall()[0], 0))
def op_vmoveto(self, index):
if self.flexing:
# We must add a parameter to the stack if we are flexing
self.push(0)
self.exch()
return
self.endPath()
self.rMoveTo((0, self.popall()[0]))
def op_closepath(self, index):
self.closePath()
def op_setcurrentpoint(self, index):
args = self.popall()
x, y = args
self.currentPoint = x, y
def op_endchar(self, index):
self.endPath()
def op_hsbw(self, index):
sbx, wx = self.popall()
self.width = wx
self.sbx = sbx
self.currentPoint = sbx, self.currentPoint[1]
def op_sbw(self, index):
self.popall() # XXX
#
def op_callsubr(self, index):
subrIndex = self.pop()
subr = self.subrs[subrIndex]
self.execute(subr)
def op_callothersubr(self, index):
subrIndex = self.pop()
nArgs = self.pop()
# print nArgs, subrIndex, "callothersubr"
if subrIndex == 0 and nArgs == 3:
self.doFlex()
self.flexing = 0
elif subrIndex == 1 and nArgs == 0:
self.flexing = 1
# ignore...
def op_pop(self, index):
pass # ignore...
def doFlex(self):
finaly = self.pop()
finalx = self.pop()
self.pop() # flex height is unused
p3y = self.pop()
p3x = self.pop()
bcp4y = self.pop()
bcp4x = self.pop()
bcp3y = self.pop()
bcp3x = self.pop()
p2y = self.pop()
p2x = self.pop()
bcp2y = self.pop()
bcp2x = self.pop()
bcp1y = self.pop()
bcp1x = self.pop()
rpy = self.pop()
rpx = self.pop()
# call rrcurveto
self.push(bcp1x + rpx)
self.push(bcp1y + rpy)
self.push(bcp2x)
self.push(bcp2y)
self.push(p2x)
self.push(p2y)
self.op_rrcurveto(None)
# call rrcurveto
self.push(bcp3x)
self.push(bcp3y)
self.push(bcp4x)
self.push(bcp4y)
self.push(p3x)
self.push(p3y)
self.op_rrcurveto(None)
# Push back final coords so subr 0 can find them
self.push(finalx)
self.push(finaly)
def op_dotsection(self, index):
self.popall() # XXX
def op_hstem3(self, index):
self.popall() # XXX
def op_seac(self, index):
"asb adx ady bchar achar seac"
from fontTools.encodings.StandardEncoding import StandardEncoding
asb, adx, ady, bchar, achar = self.popall()
baseGlyph = StandardEncoding[bchar]
self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
accentGlyph = StandardEncoding[achar]
adx = adx + self.sbx - asb # seac weirdness
self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))
def op_vstem3(self, index):
self.popall() # XXX
class T2CharString(object):
operandEncoding = t2OperandEncoding
operators, opcodes = buildOperatorDict(t2Operators)
decompilerClass = SimpleT2Decompiler
outlineExtractor = T2OutlineExtractor
def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None):
if program is None:
program = []
self.bytecode = bytecode
self.program = program
self.private = private
self.globalSubrs = globalSubrs if globalSubrs is not None else []
self._cur_vsindex = None
def getNumRegions(self, vsindex=None):
pd = self.private
assert pd is not None
if vsindex is not None:
self._cur_vsindex = vsindex
elif self._cur_vsindex is None:
self._cur_vsindex = pd.vsindex if hasattr(pd, "vsindex") else 0
return pd.getNumRegions(self._cur_vsindex)
def __repr__(self):
if self.bytecode is None:
return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
else:
return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))
def getIntEncoder(self):
return encodeIntT2
def getFixedEncoder(self):
return encodeFixed
def decompile(self):
if not self.needsDecompilation():
return
subrs = getattr(self.private, "Subrs", [])
decompiler = self.decompilerClass(subrs, self.globalSubrs, self.private)
decompiler.execute(self)
def draw(self, pen, blender=None):
subrs = getattr(self.private, "Subrs", [])
extractor = self.outlineExtractor(
pen,
subrs,
self.globalSubrs,
self.private.nominalWidthX,
self.private.defaultWidthX,
self.private,
blender,
)
extractor.execute(self)
self.width = extractor.width
def calcBounds(self, glyphSet):
boundsPen = BoundsPen(glyphSet)
self.draw(boundsPen)
return boundsPen.bounds
def compile(self, isCFF2=False):
if self.bytecode is not None:
return
opcodes = self.opcodes
program = self.program
if isCFF2:
# If present, remove return and endchar operators.
if program and program[-1] in ("return", "endchar"):
program = program[:-1]
elif program and not isinstance(program[-1], str):
raise CharStringCompileError(
"T2CharString or Subr has items on the stack after last operator."
)
bytecode = []
encodeInt = self.getIntEncoder()
encodeFixed = self.getFixedEncoder()
i = 0
end = len(program)
while i < end:
token = program[i]
i = i + 1
if isinstance(token, str):
try:
bytecode.extend(bytechr(b) for b in opcodes[token])
except KeyError:
raise CharStringCompileError("illegal operator: %s" % token)
if token in ("hintmask", "cntrmask"):
bytecode.append(program[i]) # hint mask
i = i + 1
elif isinstance(token, int):
bytecode.append(encodeInt(token))
elif isinstance(token, float):
bytecode.append(encodeFixed(token))
else:
assert 0, "unsupported type: %s" % type(token)
try:
bytecode = bytesjoin(bytecode)
except TypeError:
log.error(bytecode)
raise
self.setBytecode(bytecode)
def needsDecompilation(self):
return self.bytecode is not None
def setProgram(self, program):
self.program = program
self.bytecode = None
def setBytecode(self, bytecode):
self.bytecode = bytecode
self.program = None
def getToken(self, index, len=len, byteord=byteord, isinstance=isinstance):
if self.bytecode is not None:
if index >= len(self.bytecode):
return None, 0, 0
b0 = byteord(self.bytecode[index])
index = index + 1
handler = self.operandEncoding[b0]
token, index = handler(self, b0, self.bytecode, index)
else:
if index >= len(self.program):
return None, 0, 0
token = self.program[index]
index = index + 1
isOperator = isinstance(token, str)
return token, isOperator, index
def getBytes(self, index, nBytes):
if self.bytecode is not None:
newIndex = index + nBytes
bytes = self.bytecode[index:newIndex]
index = newIndex
else:
bytes = self.program[index]
index = index + 1
assert len(bytes) == nBytes
return bytes, index
def handle_operator(self, operator):
return operator
def toXML(self, xmlWriter, ttFont=None):
from fontTools.misc.textTools import num2binary
if self.bytecode is not None:
xmlWriter.dumphex(self.bytecode)
else:
index = 0
args = []
while True:
token, isOperator, index = self.getToken(index)
if token is None:
break
if isOperator:
if token in ("hintmask", "cntrmask"):
hintMask, isOperator, index = self.getToken(index)
bits = []
for byte in hintMask:
bits.append(num2binary(byteord(byte), 8))
hintMask = strjoin(bits)
line = " ".join(args + [token, hintMask])
else:
line = " ".join(args + [token])
xmlWriter.write(line)
xmlWriter.newline()
args = []
else:
if isinstance(token, float):
token = floatToFixedToStr(token, precisionBits=16)
else:
token = str(token)
args.append(token)
if args:
# NOTE: only CFF2 charstrings/subrs can have numeric arguments on
# the stack after the last operator. Compiling this would fail if
# this is part of CFF 1.0 table.
line = " ".join(args)
xmlWriter.write(line)
def fromXML(self, name, attrs, content):
from fontTools.misc.textTools import binary2num, readHex
if attrs.get("raw"):
self.setBytecode(readHex(content))
return
content = strjoin(content)
content = content.split()
program = []
end = len(content)
i = 0
while i < end:
token = content[i]
i = i + 1
try:
token = int(token)
except ValueError:
try:
token = strToFixedToFloat(token, precisionBits=16)
except ValueError:
program.append(token)
if token in ("hintmask", "cntrmask"):
mask = content[i]
maskBytes = b""
for j in range(0, len(mask), 8):
maskBytes = maskBytes + bytechr(binary2num(mask[j : j + 8]))
program.append(maskBytes)
i = i + 1
else:
program.append(token)
else:
program.append(token)
self.setProgram(program)
class T1CharString(T2CharString):
operandEncoding = t1OperandEncoding
operators, opcodes = buildOperatorDict(t1Operators)
def __init__(self, bytecode=None, program=None, subrs=None):
super().__init__(bytecode, program)
self.subrs = subrs
def getIntEncoder(self):
return encodeIntT1
def getFixedEncoder(self):
def encodeFixed(value):
raise TypeError("Type 1 charstrings don't support floating point operands")
def decompile(self):
if self.bytecode is None:
return
program = []
index = 0
while True:
token, isOperator, index = self.getToken(index)
if token is None:
break
program.append(token)
self.setProgram(program)
def draw(self, pen):
extractor = T1OutlineExtractor(pen, self.subrs)
extractor.execute(self)
self.width = extractor.width
class DictDecompiler(object):
operandEncoding = cffDictOperandEncoding
def __init__(self, strings, parent=None):
self.stack = []
self.strings = strings
self.dict = {}
self.parent = parent
def getDict(self):
assert len(self.stack) == 0, "non-empty stack"
return self.dict
def decompile(self, data):
index = 0
lenData = len(data)
push = self.stack.append
while index < lenData:
b0 = byteord(data[index])
index = index + 1
handler = self.operandEncoding[b0]
value, index = handler(self, b0, data, index)
if value is not None:
push(value)
def pop(self):
value = self.stack[-1]
del self.stack[-1]
return value
def popall(self):
args = self.stack[:]
del self.stack[:]
return args
def handle_operator(self, operator):
operator, argType = operator
if isinstance(argType, tuple):
value = ()
for i in range(len(argType) - 1, -1, -1):
arg = argType[i]
arghandler = getattr(self, "arg_" + arg)
value = (arghandler(operator),) + value
else:
arghandler = getattr(self, "arg_" + argType)
value = arghandler(operator)
if operator == "blend":
self.stack.extend(value)
else:
self.dict[operator] = value
def arg_number(self, name):
if isinstance(self.stack[0], list):
out = self.arg_blend_number(self.stack)
else:
out = self.pop()
return out
def arg_blend_number(self, name):
out = []
blendArgs = self.pop()
numMasters = len(blendArgs)
out.append(blendArgs)
out.append("blend")
dummy = self.popall()
return blendArgs
def arg_SID(self, name):
return self.strings[self.pop()]
def arg_array(self, name):
return self.popall()
def arg_blendList(self, name):
"""
There may be non-blend args at the top of the stack. We first calculate
where the blend args start in the stack. These are the last
numMasters*numBlends) +1 args.
The blend args starts with numMasters relative coordinate values, the BlueValues in the list from the default master font. This is followed by
numBlends list of values. Each of value in one of these lists is the
Variable Font delta for the matching region.
We re-arrange this to be a list of numMaster entries. Each entry starts with the corresponding default font relative value, and is followed by
the delta values. We then convert the default values, the first item in each entry, to an absolute value.
"""
vsindex = self.dict.get("vsindex", 0)
numMasters = (
self.parent.getNumRegions(vsindex) + 1
) # only a PrivateDict has blended ops.
numBlends = self.pop()
args = self.popall()
numArgs = len(args)
# The spec says that there should be no non-blended Blue Values,.
assert numArgs == numMasters * numBlends
value = [None] * numBlends
numDeltas = numMasters - 1
i = 0
prevVal = 0
while i < numBlends:
newVal = args[i] + prevVal
prevVal = newVal
masterOffset = numBlends + (i * numDeltas)
blendList = [newVal] + args[masterOffset : masterOffset + numDeltas]
value[i] = blendList
i += 1
return value
def arg_delta(self, name):
valueList = self.popall()
out = []
if valueList and isinstance(valueList[0], list):
# arg_blendList() has already converted these to absolute values.
out = valueList
else:
current = 0
for v in valueList:
current = current + v
out.append(current)
return out
def calcSubrBias(subrs):
nSubrs = len(subrs)
if nSubrs < 1240:
bias = 107
elif nSubrs < 33900:
bias = 1131
else:
bias = 32768
return bias