AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/stats/_diagnostic_other.py
2024-10-02 22:15:59 +04:00

1126 lines
39 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Score, lagrange multiplier and conditional moment tests
robust to misspecification or without specification of higher moments
Created on Thu Oct 30 00:42:38 2014
Author: Josef Perktold
License: BSD-3
Notes
-----
This module is a mixture of very general and very specific functions for
hypothesis testing in general models, targeted mainly to non-normal models.
Some of the options or versions of these tests are mainly intented for
cross-checking and to replicate different examples in references.
We need clean versions with good defaults for those functions that are
intended for the user.
References
----------
The following references are collected after my intitial implementation and is
most likely not exactly what I used.
The main articles on which the functions are directly based upon, are Boos 1992,
Tauchen 1985 and Whitney 1985a. Wooldrige artificial regression is
based on several articles and his text book.
Background reading are the textbooks by Cameron and Trivedi, Wooldridge and
Davidson and MacKinnon.
Newey and MacFadden 1994 provide some of the theoretical background.
Poisson dispersion tests are based on Dean 1992 and articles and text books by
Cameron and Trivedi.
The references currently do not include the literature on LM-test for
specification and diagnostic testing, like Pagan, Bera, Bera and Yoon and
many others, except those for the Poisson excess dispersion case and Pagan
and Vella.
Boos, Dennis D. 1992. “On Generalized Score Tests.” The American Statistician 46
(4): 32733. https://doi.org/10.2307/2685328.
Breslow, Norman. 1989. “Score Tests in Overdispersed GLMs.” In Statistical
Modelling, edited by Adriano Decarli, Brian J. Francis, Robert Gilchrist, and
Gilg U. H. Seeber, 6474. Lecture Notes in Statistics 57. Springer New York.
http://link.springer.com/chapter/10.1007/978-1-4612-3680-1_8.
Breslow, Norman. 1990. “Tests of Hypotheses in Overdispersed Poisson Regression
and Other Quasi- Likelihood Models.” Journal of the American Statistical
Association 85 (410): 56571. https://doi.org/10.2307/2289799.
Cameron, A. Colin, and Pravin K. Trivedi. 1986. “Econometric Models Based on
Count Data. Comparisons and Applications of Some Estimators and Tests.” Journal
of Applied Econometrics 1 (1): 2953. https://doi.org/10.1002/jae.3950010104.
Cameron, A. Colin, and Pravin K. Trivedi. 1990a. “Conditional Moment Tests and
Orthogonal Polynomials.” Indiana University, Department of Economics, Working
Paper, 90051.
Cameron, A. Colin, and Pravin K. Trivedi. 1990b. “Regression-Based Tests for
Overdispersion in the Poisson Model.” Journal of Econometrics 46 (3): 34764.
https://doi.org/10.1016/0304-4076(90)90014-K.
Cameron, A. Colin, and Pravin K. Trivedi. Microeconometrics: methods and
applications. Cambridge university press, 2005.
Cameron, A. Colin, and Pravin K. Trivedi. Regression analysis of count data.
Vol. 53. Cambridge university press, 2013.
Davidson, Russell, and James G. MacKinnon. 1981. “Several Tests for Model
Specification in the Presence of Alternative Hypotheses.” Econometrica 49 (3):
78193. https://doi.org/10.2307/1911522.
Davidson, Russell, and James G. MacKinnon. 1990. “Specification Tests Based on
Artificial Regressions.” Journal of the American Statistical Association 85
(409): 22027. https://doi.org/10.2307/2289548.
Davidson, Russell, and James G. MacKinnon. 1991. “Artificial Regressions and C
(α) Tests.” Economics Letters 35 (2): 14953.
https://doi.org/10.1016/0165-1765(91)90162-E.
Davidson, Russell, and James G. MacKinnon. Econometric theory and methods. Vol.
5. New York: Oxford University Press, 2004.
Dean, C. B. 1992. “Testing for Overdispersion in Poisson and Binomial Regression
Models.” Journal of the American Statistical Association 87 (418): 45157.
https://doi.org/10.2307/2290276.
Dean, C., and J. F. Lawless. 1989. “Tests for Detecting Overdispersion in
Poisson Regression Models.” Journal of the American Statistical Association 84
(406): 46772. https://doi.org/10.2307/2289931.
Newey, Whitney K. 1985a. “Generalized Method of Moments Specification Testing.”
Journal of Econometrics 29 (3): 22956.
https://doi.org/10.1016/0304-4076(85)90154-X.
Newey, Whitney K. 1985b. “Maximum Likelihood Specification Testing and
Conditional Moment Tests.” Econometrica 53 (5): 104770.
https://doi.org/10.2307/1911011.
Newey, Whitney K. and Kenneth D. West. 1987. “Hypothesis Testing with Efficient
Method of Moments Estimation.” International Economic Review 28 (3): 77787.
https://doi.org/10.2307/2526578.
Newey, Whitney K. and Daniel McFadden. 1994 "Large sample estimation and
hypothesis testing." Handbook of econometrics 4: 2111-2245.
Pagan, Adrian, and Frank Vella. 1989. “Diagnostic Tests for Models Based on
Individual Data: A Survey.” Journal of Applied Econometrics 4 (S1): S2959.
https://doi.org/10.1002/jae.3950040504.
Tauchen, George. 1985. “Diagnostic Testing and Evaluation of Maximum Likelihood
Models.” Journal of Econometrics 30 (12): 41543.
https://doi.org/10.1016/0304-4076(85)90149-6.
White, Halbert. 1981. “Consequences and Detection of Misspecified Nonlinear
Regression Models.” Journal of the American Statistical Association 76 (374):
41933. https://doi.org/10.2307/2287845.
White, Halbert. 1983. “Maximum Likelihood Estimation of Misspecified Models.”
Econometrica 51 (2): 513. https://doi.org/10.2307/1912004.
White, Halbert. 1994. Estimation, Inference and Specification Analysis.
Cambridge: Cambridge University Press. https://doi.org/10.1017/CCOL0521252806.
Wooldridge, Jeffrey M. 1991. “Specification Testing and Quasi-Maximum-
Likelihood Estimation.” Journal of Econometrics 48 (12): 2955.
https://doi.org/10.1016/0304-4076(91)90031-8.
Wooldridge, Jeffrey M. 1990. “A Unified Approach to Robust, Regression-Based
Specification Tests.” Econometric Theory 6 (1): 1743.
Wooldridge, Jeffrey M. 1991a. “On the Application of Robust, Regression- Based
Diagnostics to Models of Conditional Means and Conditional Variances.” Journal
of Econometrics 47 (1): 546. https://doi.org/10.1016/0304-4076(91)90076-P.
Wooldridge, Jeffrey M. 1991b. “On the Application of Robust, Regression- Based
Diagnostics to Models of Conditional Means and Conditional Variances.” Journal
of Econometrics 47 (1): 546. https://doi.org/10.1016/0304-4076(91)90076-P.
Wooldridge, Jeffrey M. 1991c. “Specification Testing and Quasi-Maximum-
Likelihood Estimation.” Journal of Econometrics 48 (12): 2955.
https://doi.org/10.1016/0304-4076(91)90031-8.
Wooldridge, Jeffrey M. 1994. “On the Limits of GLM for Specification Testing: A
Comment on Gurmu and Trivedi.” Econometric Theory 10 (2): 40918.
https://doi.org/10.2307/3532875.
Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.” Handbook
of Applied Econometrics 2: 352406.
Wooldridge, Jeffrey M. Econometric analysis of cross section and panel data. MIT
press, 2010.
"""
import warnings
import numpy as np
from scipy import stats
from statsmodels.tools.decorators import cache_readonly
from statsmodels.regression.linear_model import OLS
# deprecated dispersion functions, moved to discrete._diagnostic_count
def dispersion_poisson(results):
"""Score/LM type tests for Poisson variance assumptions
.. deprecated:: 0.14
dispersion_poisson moved to discrete._diagnostic_count
Null Hypothesis is
H0: var(y) = E(y) and assuming E(y) is correctly specified
H1: var(y) ~= E(y)
The tests are based on the constrained model, i.e. the Poisson model.
The tests differ in their assumed alternatives, and in their maintained
assumptions.
Parameters
----------
results : Poisson results instance
This can be a results instance for either a discrete Poisson or a GLM
with family Poisson.
Returns
-------
res : ndarray, shape (7, 2)
each row contains the test statistic and p-value for one of the 7 tests
computed here.
description : 2-D list of strings
Each test has two strings a descriptive name and a string for the
alternative hypothesis.
"""
msg = (
'dispersion_poisson here is deprecated, use the version in '
'discrete._diagnostic_count'
)
warnings.warn(msg, FutureWarning)
from statsmodels.discrete._diagnostics_count import test_poisson_dispersion
return test_poisson_dispersion(results, _old=True)
def dispersion_poisson_generic(results, exog_new_test, exog_new_control=None,
include_score=False, use_endog=True,
cov_type='HC3', cov_kwds=None, use_t=False):
"""A variable addition test for the variance function
.. deprecated:: 0.14
dispersion_poisson_generic moved to discrete._diagnostic_count
This uses an artificial regression to calculate a variant of an LM or
generalized score test for the specification of the variance assumption
in a Poisson model. The performed test is a Wald test on the coefficients
of the `exog_new_test`.
Warning: insufficiently tested, especially for options
"""
msg = (
'dispersion_poisson_generic here is deprecated, use the version in '
'discrete._diagnostic_count'
)
warnings.warn(msg, FutureWarning)
from statsmodels.discrete._diagnostics_count import (
_test_poisson_dispersion_generic
)
res_test = _test_poisson_dispersion_generic(
results, exog_new_test, exog_new_control= exog_new_control,
include_score=include_score, use_endog=use_endog,
cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t,
)
return res_test
class ResultsGeneric:
def __init__(self, **kwds):
self.__dict__.update(kwds)
class TestResults(ResultsGeneric):
def summary(self):
txt = 'Specification Test (LM, score)\n'
stat = [self.c1, self.c2, self.c3]
pval = [self.pval1, self.pval2, self.pval3]
description = ['nonrobust', 'dispersed', 'HC']
for row in zip(description, stat, pval):
txt += '%-12s statistic = %6.4f pvalue = %6.5f\n' % row
txt += '\nAssumptions:\n'
txt += 'nonrobust: variance is correctly specified\n'
txt += 'dispersed: variance correctly specified up to scale factor\n'
txt += 'HC : robust to any heteroscedasticity\n'
txt += 'test is not robust to correlation across observations'
return txt
def lm_test_glm(result, exog_extra, mean_deriv=None):
'''score/lagrange multiplier test for GLM
Wooldridge procedure for test of mean function in GLM
Parameters
----------
results : GLMResults instance
results instance with the constrained model
exog_extra : ndarray or None
additional exogenous variables for variable addition test
This can be set to None if mean_deriv is provided.
mean_deriv : None or ndarray
Extra moment condition that correspond to the partial derivative of
a mean function with respect to some parameters.
Returns
-------
test_results : Results instance
The results instance has the following attributes which are score
statistic and p-value for 3 versions of the score test.
c1, pval1 : nonrobust score_test results
c2, pval2 : score test results robust to over or under dispersion
c3, pval3 : score test results fully robust to any heteroscedasticity
The test results instance also has a simple summary method.
Notes
-----
TODO: add `df` to results and make df detection more robust
This implements the auxiliary regression procedure of Wooldridge,
implemented based on the presentation in chapter 8 in Handbook of
Applied Econometrics 2.
References
----------
Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.”
Handbook of Applied Econometrics 2: 352406.
and other articles and text book by Wooldridge
'''
if hasattr(result, '_result'):
res = result._result
else:
res = result
mod = result.model
nobs = mod.endog.shape[0]
#mean_func = mod.family.link.inverse
dlinkinv = mod.family.link.inverse_deriv
# derivative of mean function w.r.t. beta (linear params)
dm = lambda x, linpred: dlinkinv(linpred)[:,None] * x
var_func = mod.family.variance
x = result.model.exog
x2 = exog_extra
# test omitted
try:
lin_pred = res.predict(which="linear")
except TypeError:
# TODO: Standardized to which="linear" and remove linear kwarg
lin_pred = res.predict(linear=True)
dm_incl = dm(x, lin_pred)
if x2 is not None:
dm_excl = dm(x2, lin_pred)
if mean_deriv is not None:
# allow both and stack
dm_excl = np.column_stack((dm_excl, mean_deriv))
elif mean_deriv is not None:
dm_excl = mean_deriv
else:
raise ValueError('either exog_extra or mean_deriv have to be provided')
# TODO check for rank or redundant, note OLS calculates the rank
k_constraint = dm_excl.shape[1]
fittedvalues = res.predict() # discrete has linpred instead of mean
v = var_func(fittedvalues)
std = np.sqrt(v)
res_ols1 = OLS(res.resid_response / std, np.column_stack((dm_incl, dm_excl)) / std[:, None]).fit()
# case: nonrobust assumes variance implied by distribution is correct
c1 = res_ols1.ess
pval1 = stats.chi2.sf(c1, k_constraint)
#print c1, stats.chi2.sf(c1, 2)
# case: robust to dispersion
c2 = nobs * res_ols1.rsquared
pval2 = stats.chi2.sf(c2, k_constraint)
#print c2, stats.chi2.sf(c2, 2)
# case: robust to heteroscedasticity
from statsmodels.stats.multivariate_tools import partial_project
pp = partial_project(dm_excl / std[:,None], dm_incl / std[:,None])
resid_p = res.resid_response / std
res_ols3 = OLS(np.ones(nobs), pp.resid * resid_p[:,None]).fit()
#c3 = nobs * res_ols3.rsquared # this is Wooldridge
c3b = res_ols3.ess # simpler if endog is ones
pval3 = stats.chi2.sf(c3b, k_constraint)
tres = TestResults(c1=c1, pval1=pval1,
c2=c2, pval2=pval2,
c3=c3b, pval3=pval3)
return tres
def cm_test_robust(resid, resid_deriv, instruments, weights=1):
'''score/lagrange multiplier of Wooldridge
generic version of Wooldridge procedure for test of conditional moments
Limitation: This version allows only for one unconditional moment
restriction, i.e. resid is scalar for each observation.
Another limitation is that it assumes independent observations, no
correlation in residuals and weights cannot be replaced by cross-observation
whitening.
Parameters
----------
resid : ndarray, (nobs, )
conditional moment restriction, E(r | x, params) = 0
resid_deriv : ndarray, (nobs, k_params)
derivative of conditional moment restriction with respect to parameters
instruments : ndarray, (nobs, k_instruments)
indicator variables of Wooldridge, multiplies the conditional momen
restriction
weights : ndarray
This is a weights function as used in WLS. The moment
restrictions are multiplied by weights. This corresponds to the
inverse of the variance in a heteroskedastic model.
Returns
-------
test_results : Results instance
??? TODO
Notes
-----
This implements the auxiliary regression procedure of Wooldridge,
implemented based on procedure 2.1 in Wooldridge 1990.
Wooldridge allows for multivariate conditional moments (`resid`)
TODO: check dimensions for multivariate case for extension
References
----------
Wooldridge
Wooldridge
and more Wooldridge
'''
# notation: Wooldridge uses too mamny Greek letters
# instruments is capital lambda
# resid is small phi
# resid_deriv is capital phi
# weights is C
nobs = resid.shape[0]
from statsmodels.stats.multivariate_tools import partial_project
w_sqrt = np.sqrt(weights)
if np.size(weights) > 1:
w_sqrt = w_sqrt[:,None]
pp = partial_project(instruments * w_sqrt, resid_deriv * w_sqrt)
mom_resid = pp.resid
moms_test = mom_resid * resid[:, None] * w_sqrt
# we get this here in case we extend resid to be more than 1-D
k_constraint = moms_test.shape[1]
# use OPG variance as in Wooldridge 1990. This might generalize
cov = moms_test.T.dot(moms_test)
diff = moms_test.sum(0)
# see Wooldridge last page in appendix
stat = diff.dot(np.linalg.solve(cov, diff))
# for checking, this corresponds to nobs * rsquared of auxiliary regression
stat2 = OLS(np.ones(nobs), moms_test).fit().ess
pval = stats.chi2.sf(stat, k_constraint)
return stat, pval, stat2
def lm_robust(score, constraint_matrix, score_deriv_inv, cov_score,
cov_params=None):
'''general formula for score/LM test
generalized score or lagrange multiplier test for implicit constraints
`r(params) = 0`, with gradient `R = d r / d params`
linear constraints are given by `R params - q = 0`
It is assumed that all arrays are evaluated at the constrained estimates.
Parameters
----------
score : ndarray, 1-D
derivative of objective function at estimated parameters
of constrained model
constraint_matrix R : ndarray
Linear restriction matrix or Jacobian of nonlinear constraints
hessian_inv, Ainv : ndarray, symmetric, square
inverse of second derivative of objective function
TODO: could be OPG or any other estimator if information matrix
equality holds
cov_score B : ndarray, symmetric, square
covariance matrix of the score. This is the inner part of a sandwich
estimator.
cov_params V : ndarray, symmetric, square
covariance of full parameter vector evaluated at constrained parameter
estimate. This can be specified instead of cov_score B.
Returns
-------
lm_stat : float
score/lagrange multiplier statistic
Notes
-----
'''
# shorthand alias
R, Ainv, B, V = constraint_matrix, score_deriv_inv, cov_score, cov_params
tmp = R.dot(Ainv)
wscore = tmp.dot(score) # C Ainv score
if B is None and V is None:
# only Ainv is given, so we assume information matrix identity holds
# computational short cut, should be same if Ainv == inv(B)
lm_stat = score.dot(Ainv.dot(score))
else:
# information matrix identity does not hold
if V is None:
inner = tmp.dot(B).dot(tmp.T)
else:
inner = R.dot(V).dot(R.T)
#lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore))
# Let's assume inner is invertible, TODO: check if usecase for pinv exists
lm_stat = wscore.dot(np.linalg.solve(inner, wscore))
return lm_stat#, lm_stat2
def lm_robust_subset(score, k_constraints, score_deriv_inv, cov_score):
'''general formula for score/LM test
generalized score or lagrange multiplier test for constraints on a subset
of parameters
`params_1 = value`, where params_1 is a subset of the unconstrained
parameter vector.
It is assumed that all arrays are evaluated at the constrained estimates.
Parameters
----------
score : ndarray, 1-D
derivative of objective function at estimated parameters
of constrained model
k_constraint : int
number of constraints
score_deriv_inv : ndarray, symmetric, square
inverse of second derivative of objective function
TODO: could be OPG or any other estimator if information matrix
equality holds
cov_score B : ndarray, symmetric, square
covariance matrix of the score. This is the inner part of a sandwich
estimator.
not cov_params V : ndarray, symmetric, square
covariance of full parameter vector evaluated at constrained parameter
estimate. This can be specified instead of cov_score B.
Returns
-------
lm_stat : float
score/lagrange multiplier statistic
p-value : float
p-value of the LM test based on chisquare distribution
Notes
-----
The implementation is based on Boos 1992 section 4.1. The same derivation
is also in other articles and in text books.
'''
# Notation in Boos
# score `S = sum (s_i)
# score_obs `s_i`
# score_deriv `I` is derivative of score (hessian)
# `D` is covariance matrix of score, OPG product given independent observations
#k_params = len(score)
# Note: I reverse order between constraint and unconstrained compared to Boos
# submatrices of score_deriv/hessian
# these are I22 and I12 in Boos
#h_uu = score_deriv[-k_constraints:, -k_constraints:]
h_uu = score_deriv_inv[:-k_constraints, :-k_constraints]
h_cu = score_deriv_inv[-k_constraints:, :-k_constraints]
# TODO: pinv or solve ?
tmp_proj = h_cu.dot(np.linalg.inv(h_uu))
tmp = np.column_stack((-tmp_proj, np.eye(k_constraints))) #, tmp_proj))
cov_score_constraints = tmp.dot(cov_score.dot(tmp.T))
#lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore))
# Let's assume inner is invertible, TODO: check if usecase for pinv exists
lm_stat = score.dot(np.linalg.solve(cov_score_constraints, score))
pval = stats.chi2.sf(lm_stat, k_constraints)
# # check second calculation Boos referencing Kent 1982 and Engle 1984
# # we can use this when robust_cov_params of full model is available
# #h_inv = np.linalg.inv(score_deriv)
# hinv = score_deriv_inv
# v = h_inv.dot(cov_score.dot(h_inv)) # this is robust cov_params
# v_cc = v[:k_constraints, :k_constraints]
# h_cc = score_deriv[:k_constraints, :k_constraints]
# # brute force calculation:
# h_resid_cu = h_cc - h_cu.dot(np.linalg.solve(h_uu, h_cu))
# cov_s_c = h_resid_cu.dot(v_cc.dot(h_resid_cu))
# diff = np.max(np.abs(cov_s_c - cov_score_constraints))
return lm_stat, pval #, lm_stat2
def lm_robust_subset_parts(score, k_constraints,
score_deriv_uu, score_deriv_cu,
cov_score_cc, cov_score_cu, cov_score_uu):
"""robust generalized score tests on subset of parameters
This is the same as lm_robust_subset with arguments in parts of
partitioned matrices.
This can be useful, when we have the parts based on different estimation
procedures, i.e. when we do not have the full unconstrained model.
Calculates mainly the covariance of the constraint part of the score.
Parameters
----------
score : ndarray, 1-D
derivative of objective function at estimated parameters
of constrained model. These is the score component for the restricted
part under hypothesis. The unconstrained part of the score is assumed
to be zero.
k_constraint : int
number of constraints
score_deriv_uu : ndarray, symmetric, square
first derivative of moment equation or second derivative of objective
function for the unconstrained part
TODO: could be OPG or any other estimator if information matrix
equality holds
score_deriv_cu : ndarray
first cross derivative of moment equation or second cross
derivative of objective function between.
cov_score_cc : ndarray
covariance matrix of the score for the unconstrained part.
This is the inner part of a sandwich estimator.
cov_score_cu : ndarray
covariance matrix of the score for the off-diagonal block, i.e.
covariance between constrained and unconstrained part.
cov_score_uu : ndarray
covariance matrix of the score for the unconstrained part.
Returns
-------
lm_stat : float
score/lagrange multiplier statistic
p-value : float
p-value of the LM test based on chisquare distribution
Notes
-----
TODO: these function should just return the covariance of the score
instead of calculating the score/lm test.
Implementation similar to lm_robust_subset and is based on Boos 1992,
section 4.1 in the form attributed to Breslow (1990). It does not use the
computation attributed to Kent (1982) and Engle (1984).
"""
tmp_proj = np.linalg.solve(score_deriv_uu, score_deriv_cu.T).T
tmp = tmp_proj.dot(cov_score_cu.T)
# this needs to make a copy of cov_score_cc for further inplace modification
cov = cov_score_cc - tmp
cov -= tmp.T
cov += tmp_proj.dot(cov_score_uu).dot(tmp_proj.T)
lm_stat = score.dot(np.linalg.solve(cov, score))
pval = stats.chi2.sf(lm_stat, k_constraints)
return lm_stat, pval
def lm_robust_reparameterized(score, params_deriv, score_deriv, cov_score):
"""robust generalized score test for transformed parameters
The parameters are given by a nonlinear transformation of the estimated
reduced parameters
`params = g(params_reduced)` with jacobian `G = d g / d params_reduced`
score and other arrays are for full parameter space `params`
Parameters
----------
score : ndarray, 1-D
derivative of objective function at estimated parameters
of constrained model
params_deriv : ndarray
Jacobian G of the parameter trasnformation
score_deriv : ndarray, symmetric, square
second derivative of objective function
TODO: could be OPG or any other estimator if information matrix
equality holds
cov_score B : ndarray, symmetric, square
covariance matrix of the score. This is the inner part of a sandwich
estimator.
Returns
-------
lm_stat : float
score/lagrange multiplier statistic
p-value : float
p-value of the LM test based on chisquare distribution
Notes
-----
Boos 1992, section 4.3, expression for T_{GS} just before example 6
"""
# Boos notation
# params_deriv G
k_params, k_reduced = params_deriv.shape
k_constraints = k_params - k_reduced
G = params_deriv # shortcut alias
tmp_c0 = np.linalg.pinv(G.T.dot(score_deriv.dot(G)))
tmp_c1 = score_deriv.dot(G.dot(tmp_c0.dot(G.T)))
tmp_c = np.eye(k_params) - tmp_c1
cov = tmp_c.dot(cov_score.dot(tmp_c.T)) # warning: reduced rank
lm_stat = score.dot(np.linalg.pinv(cov).dot(score))
pval = stats.chi2.sf(lm_stat, k_constraints)
return lm_stat, pval
def conditional_moment_test_generic(mom_test, mom_test_deriv,
mom_incl, mom_incl_deriv,
var_mom_all=None,
cov_type='OPG', cov_kwds=None):
"""generic conditional moment test
This is mainly intended as internal function in support of diagnostic
and specification tests. It has no conversion and checking of correct
arguments.
Parameters
----------
mom_test : ndarray, 2-D (nobs, k_constraints)
moment conditions that will be tested to be zero
mom_test_deriv : ndarray, 2-D, square (k_constraints, k_constraints)
derivative of moment conditions under test with respect to the
parameters of the model summed over observations.
mom_incl : ndarray, 2-D (nobs, k_params)
moment conditions that where use in estimation, assumed to be zero
This is score_obs in the case of (Q)MLE
mom_incl_deriv : ndarray, 2-D, square (k_params, k_params)
derivative of moment conditions of estimator summed over observations
This is the information matrix or Hessian in the case of (Q)MLE.
var_mom_all : None, or ndarray, 2-D, (k, k) with k = k_constraints + k_params
Expected product or variance of the joint (column_stacked) moment
conditions. The stacking should have the variance of the moment
conditions under test in the first k_constraint rows and columns.
If it is not None, then it will be estimated based on cov_type.
I think: This is the Hessian of the extended or alternative model
under full MLE and score test assuming information matrix identity
holds.
Returns
-------
results
Notes
-----
TODO: cov_type other than OPG is missing
initial implementation based on Cameron Trived countbook 1998 p.48, p.56
also included: mom_incl can be None if expected mom_test_deriv is zero.
References
----------
Cameron and Trivedi 1998 count book
Wooldridge ???
Pagan and Vella 1989
"""
if cov_type != 'OPG':
raise NotImplementedError
k_constraints = mom_test.shape[1]
if mom_incl is None:
# assume mom_test_deriv is zero, do not include effect of mom_incl
if var_mom_all is None:
var_cm = mom_test.T.dot(mom_test)
else:
var_cm = var_mom_all
else:
# take into account he effect of parameter estimates on mom_test
if var_mom_all is None:
mom_all = np.column_stack((mom_test, mom_incl))
# TODO: replace with inner sandwich covariance estimator
var_mom_all = mom_all.T.dot(mom_all)
tmp = mom_test_deriv.dot(np.linalg.pinv(mom_incl_deriv))
h = np.column_stack((np.eye(k_constraints), -tmp))
var_cm = h.dot(var_mom_all.dot(h.T))
# calculate test results with chisquare
var_cm_inv = np.linalg.pinv(var_cm)
mom_test_sum = mom_test.sum(0)
statistic = mom_test_sum.dot(var_cm_inv.dot(mom_test_sum))
pval = stats.chi2.sf(statistic, k_constraints)
# normal test of individual components
se = np.sqrt(np.diag(var_cm))
tvalues = mom_test_sum / se
pvalues = stats.norm.sf(np.abs(tvalues))
res = ResultsGeneric(var_cm=var_cm,
stat_cmt=statistic,
pval_cmt=pval,
tvalues=tvalues,
pvalues=pvalues)
return res
def conditional_moment_test_regression(mom_test, mom_test_deriv=None,
mom_incl=None, mom_incl_deriv=None,
var_mom_all=None, demean=False,
cov_type='OPG', cov_kwds=None):
"""generic conditional moment test based artificial regression
this is very experimental, no options implemented yet
so far
OPG regression, or
artificial regression with Robust Wald test
The latter is (as far as I can see) the same as an overidentifying test
in GMM where the test statistic is the value of the GMM objective function
and it is assumed that parameters were estimated with optimial GMM, i.e.
the weight matrix equal to the expectation of the score variance.
"""
# so far coded from memory
nobs, k_constraints = mom_test.shape
endog = np.ones(nobs)
if mom_incl is not None:
ex = np.column_stack((mom_test, mom_incl))
else:
ex = mom_test
if demean:
ex -= ex.mean(0)
if cov_type == 'OPG':
res = OLS(endog, ex).fit()
statistic = nobs * res.rsquared
pval = stats.chi2.sf(statistic, k_constraints)
else:
res = OLS(endog, ex).fit(cov_type=cov_type, cov_kwds=cov_kwds)
tres = res.wald_test(np.eye(ex.shape[1]))
statistic = tres.statistic
pval = tres.pvalue
return statistic, pval
class CMTNewey:
"""generic moment test for GMM
This is a class to calculate and hold the various results
This is based on Newey 1985 on GMM.
Lemma 1:
Theorem 1
The main method is `chisquare` which returns the result of the
conditional moment test.
Warning: name of class and methods will likely be changed
Parameters
----------
moments : ndarray, 1-D
moments that are tested to be zero. They do not need to be derived
from a likelihood function.
moments_deriv : ndarray
derivative of the moment function with respect to the parameters that
are estimated
cov_moments : ndarray
An estimate for the joint (expected) covariance of all moments. This
can be a heteroscedasticity or correlation robust covariance estimate,
i.e. the inner part of a sandwich covariance.
weights : ndarray
Weights used in the GMM estimation.
transf_mt : ndarray
This defines the test moments where `transf_mt` is the matrix that
defines a Linear combination of moments that have expected value equal
to zero under the Null hypothesis.
Notes
-----
The one letter names in Newey 1985 are
moments, g :
cov_moments, V :
moments_deriv, H :
weights, W :
transf_mt, L :
linear transformation to get the test condition from the moments
not used, add as argument to methods or __init__?
K cov for misspecification
or mispecification_deriv
This follows the GMM version in Newey 1985a, not the MLE version in
Newey 1985b. Newey uses the generalized information matrix equality in the
MLE version Newey (1985b).
Newey 1985b Lemma 1 does not impose correctly specified likelihood, but
assumes it in the following. Lemma 1 in both articles are essentially the
same assuming D = H' W.
References
----------
- Newey 1985a, Generalized Method of Moment specification testing,
Journal of Econometrics
- Newey 1985b, Maximum Likelihood Specification Testing and Conditional
Moment Tests, Econometrica
"""
def __init__(self, moments, cov_moments, moments_deriv,
weights, transf_mt):
self.moments = moments
self.cov_moments = cov_moments
self.moments_deriv = moments_deriv
self.weights = weights
self.transf_mt = transf_mt
# derived quantities
self.moments_constraint = transf_mt.dot(moments)
self.htw = moments_deriv.T.dot(weights) # H'W
# TODO check these
self.k_moments = self.moments.shape[-1] # in this case only 1-D
# assuming full rank of L'
self.k_constraints = self.transf_mt.shape[0]
@cache_readonly
def asy_transf_params(self):
moments_deriv = self.moments_deriv # H
#weights = self.weights # W
htw = self.htw # moments_deriv.T.dot(weights) # H'W
res = np.linalg.solve(htw.dot(moments_deriv), htw)
#res = np.linalg.pinv(htw.dot(moments_deriv)).dot(htw)
return -res
@cache_readonly
def project_w(self):
# P_w = I - H (H' W H)^{-1} H' W
moments_deriv = self.moments_deriv # H
res = moments_deriv.dot(self.asy_transf_params)
res += np.eye(res.shape[0])
return res
@cache_readonly
def asy_transform_mom_constraints(self):
# L P_w
res = self.transf_mt.dot(self.project_w)
return res
@cache_readonly
def asy_cov_moments(self):
"""
`sqrt(T) * g_T(b_0) asy N(K delta, V)`
mean is not implemented,
V is the same as cov_moments in __init__ argument
"""
return self.cov_moments
@cache_readonly
def cov_mom_constraints(self):
# linear transformation
transf = self.asy_transform_mom_constraints
return transf.dot(self.asy_cov_moments).dot(transf.T)
@cache_readonly
def rank_cov_mom_constraints(self):
return np.linalg.matrix_rank(self.cov_mom_constraints)
def ztest(self):
"""statistic, p-value and degrees of freedom of separate moment test
currently two sided test only
TODO: This can use generic ztest/ttest features and return
ContrastResults
"""
diff = self.moments_constraint
bse = np.sqrt(np.diag(self.cov_mom_constraints))
# Newey uses a generalized inverse
stat = diff / bse
pval = stats.norm.sf(np.abs(stat))*2
return stat, pval
@cache_readonly
def chisquare(self):
"""statistic, p-value and degrees of freedom of joint moment test
"""
diff = self.moments_constraint
cov = self.cov_mom_constraints
# Newey uses a generalized inverse
stat = diff.T.dot(np.linalg.pinv(cov).dot(diff))
df = self.rank_cov_mom_constraints
pval = stats.chi2.sf(stat, df) # Theorem 1
return stat, pval, df
class CMTTauchen:
"""generic moment tests or conditional moment tests for Quasi-MLE
This is a generic class based on Tauchen 1985
The main method is `chisquare` which returns the result of the
conditional moment test.
Warning: name of class and of methods will likely be changed
Parameters
----------
score : ndarray, 1-D
moment condition used in estimation, score of log-likelihood function
score_deriv : ndarray
derivative of score function with respect to the parameters that are
estimated. This is the Hessian in quasi-maximum likelihood
moments : ndarray, 1-D
moments that are tested to be zero. They do not need to be derived
from a likelihood function.
moments_deriv : ndarray
derivative of the moment function with respect to the parameters that
are estimated
cov_moments : ndarray
An estimate for the joint (expected) covariance of score and test
moments. This can be a heteroscedasticity or correlation robust
covariance estimate, i.e. the inner part of a sandwich covariance.
"""
def __init__(self, score, score_deriv, moments, moments_deriv, cov_moments):
self.score = score
self.score_deriv = score_deriv
self.moments = moments
self.moments_deriv = moments_deriv
self.cov_moments_all = cov_moments
self.k_moments_test = moments.shape[-1]
self.k_params = score.shape[-1]
self.k_moments_all = self.k_params + self.k_moments_test
@cache_readonly
def cov_params_all(self):
m_deriv = np.zeros((self.k_moments_all, self.k_moments_all))
m_deriv[:self.k_params, :self.k_params] = self.score_deriv
m_deriv[self.k_params:, :self.k_params] = self.moments_deriv
m_deriv[self.k_params:, self.k_params:] = np.eye(self.k_moments_test)
m_deriv_inv = np.linalg.inv(m_deriv)
cov = m_deriv_inv.dot(self.cov_moments_all.dot(m_deriv_inv.T)) # K_inv J K_inv
return cov
@cache_readonly
def cov_mom_constraints(self):
return self.cov_params_all[self.k_params:, self.k_params:]
@cache_readonly
def rank_cov_mom_constraints(self):
return np.linalg.matrix_rank(self.cov_mom_constraints)
# TODO: not DRY, just copied from CMTNewey
def ztest(self):
"""statistic, p-value and degrees of freedom of separate moment test
currently two sided test only
TODO: This can use generic ztest/ttest features and return
ContrastResults
"""
diff = self.moments_constraint
bse = np.sqrt(np.diag(self.cov_mom_constraints))
# Newey uses a generalized inverse
stat = diff / bse
pval = stats.norm.sf(np.abs(stat))*2
return stat, pval
@cache_readonly
def chisquare(self):
"""statistic, p-value and degrees of freedom of joint moment test
"""
diff = self.moments #_constraints
cov = self.cov_mom_constraints
# Newey uses a generalized inverse, we use it also here
stat = diff.T.dot(np.linalg.pinv(cov).dot(diff))
#df = self.k_moments_test
# We allow for redundant mom_constraints:
df = self.rank_cov_mom_constraints
pval = stats.chi2.sf(stat, df)
return stat, pval, df