AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/regression/kernridgeregress_class.py
2024-10-02 22:15:59 +04:00

207 lines
7.5 KiB
Python

'''Kernel Ridge Regression for local non-parametric regression'''
import numpy as np
from scipy import spatial as ssp
import matplotlib.pylab as plt
def kernel_rbf(x,y,scale=1, **kwds):
#scale = kwds.get('scale',1)
dist = ssp.minkowski_distance_p(x[:,np.newaxis,:],y[np.newaxis,:,:],2)
return np.exp(-0.5/scale*(dist))
def kernel_euclid(x,y,p=2, **kwds):
return ssp.minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
class GaussProcess:
'''class to perform kernel ridge regression (gaussian process)
Warning: this class is memory intensive, it creates nobs x nobs distance
matrix and its inverse, where nobs is the number of rows (observations).
See sparse version for larger number of observations
Notes
-----
Todo:
* normalize multidimensional x array on demand, either by var or cov
* add confidence band
* automatic selection or proposal of smoothing parameters
Note: this is different from kernel smoothing regression,
see for example https://en.wikipedia.org/wiki/Kernel_smoother
In this version of the kernel ridge regression, the training points
are fitted exactly.
Needs a fast version for leave-one-out regression, for fitting each
observation on all the other points.
This version could be numerically improved for the calculation for many
different values of the ridge coefficient. see also short summary by
Isabelle Guyon (ETHZ) in a manuscript KernelRidge.pdf
Needs verification and possibly additional statistical results or
summary statistics for interpretation, but this is a problem with
non-parametric, non-linear methods.
Reference
---------
Rasmussen, C.E. and C.K.I. Williams, 2006, Gaussian Processes for Machine
Learning, the MIT Press, www.GaussianProcess.org/gpal, chapter 2
a short summary of the kernel ridge regression is at
http://www.ics.uci.edu/~welling/teaching/KernelsICS273B/Kernel-Ridge.pdf
'''
def __init__(self, x, y=None, kernel=kernel_rbf,
scale=0.5, ridgecoeff = 1e-10, **kwds ):
'''
Parameters
----------
x : 2d array (N,K)
data array of explanatory variables, columns represent variables
rows represent observations
y : 2d array (N,1) (optional)
endogenous variable that should be fitted or predicted
can alternatively be specified as parameter to fit method
kernel : function, default: kernel_rbf
kernel: (x1,x2)->kernel matrix is a function that takes as parameter
two column arrays and return the kernel or distance matrix
scale : float (optional)
smoothing parameter for the rbf kernel
ridgecoeff : float (optional)
coefficient that is multiplied with the identity matrix in the
ridge regression
Notes
-----
After initialization, kernel matrix is calculated and if y is given
as parameter then also the linear regression parameter and the
fitted or estimated y values, yest, are calculated. yest is available
as an attribute in this case.
Both scale and the ridge coefficient smooth the fitted curve.
'''
self.x = x
self.kernel = kernel
self.scale = scale
self.ridgecoeff = ridgecoeff
self.distxsample = kernel(x,x,scale=scale)
self.Kinv = np.linalg.inv(self.distxsample +
np.eye(*self.distxsample.shape)*ridgecoeff)
if y is not None:
self.y = y
self.yest = self.fit(y)
def fit(self,y):
'''fit the training explanatory variables to a sample ouput variable'''
self.parest = np.dot(self.Kinv, y) #self.kernel(y,y,scale=self.scale))
yhat = np.dot(self.distxsample,self.parest)
return yhat
## print ds33.shape
## ds33_2 = kernel(x,x[::k,:],scale=scale)
## dsinv = np.linalg.inv(ds33+np.eye(*distxsample.shape)*ridgecoeff)
## B = np.dot(dsinv,y[::k,:])
def predict(self,x):
'''predict new y values for a given array of explanatory variables'''
self.xpredict = x
distxpredict = self.kernel(x, self.x, scale=self.scale)
self.ypredict = np.dot(distxpredict, self.parest)
return self.ypredict
def plot(self, y, plt=plt ):
'''some basic plots'''
#todo return proper graph handles
plt.figure()
plt.plot(self.x,self.y, 'bo-', self.x, self.yest, 'r.-')
plt.title('sample (training) points')
plt.figure()
plt.plot(self.xpredict,y,'bo-',self.xpredict,self.ypredict,'r.-')
plt.title('all points')
def example1():
m,k = 500,4
upper = 6
scale=10
xs1a = np.linspace(1,upper,m)[:,np.newaxis]
xs1 = xs1a*np.ones((1,4)) + 1/(1.0+np.exp(np.random.randn(m,k)))
xs1 /= np.std(xs1[::k,:],0) # normalize scale, could use cov to normalize
y1true = np.sum(np.sin(xs1)+np.sqrt(xs1),1)[:,np.newaxis]
y1 = y1true + 0.250 * np.random.randn(m,1)
stride = 2 #use only some points as trainig points e.g 2 means every 2nd
gp1 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_euclid,
ridgecoeff=1e-10)
yhatr1 = gp1.predict(xs1)
plt.figure()
plt.plot(y1true, y1,'bo',y1true, yhatr1,'r.')
plt.title('euclid kernel: true y versus noisy y and estimated y')
plt.figure()
plt.plot(y1,'bo-',y1true,'go-',yhatr1,'r.-')
plt.title('euclid kernel: true (green), noisy (blue) and estimated (red) '+
'observations')
gp2 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_rbf,
scale=scale, ridgecoeff=1e-1)
yhatr2 = gp2.predict(xs1)
plt.figure()
plt.plot(y1true, y1,'bo',y1true, yhatr2,'r.')
plt.title('rbf kernel: true versus noisy (blue) and estimated (red) observations')
plt.figure()
plt.plot(y1,'bo-',y1true,'go-',yhatr2,'r.-')
plt.title('rbf kernel: true (green), noisy (blue) and estimated (red) '+
'observations')
#gp2.plot(y1)
def example2(m=100, scale=0.01, stride=2):
#m,k = 100,1
upper = 6
xs1 = np.linspace(1,upper,m)[:,np.newaxis]
y1true = np.sum(np.sin(xs1**2),1)[:,np.newaxis]/xs1
y1 = y1true + 0.05*np.random.randn(m,1)
ridgecoeff = 1e-10
#stride = 2 #use only some points as trainig points e.g 2 means every 2nd
gp1 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_euclid,
ridgecoeff=1e-10)
yhatr1 = gp1.predict(xs1)
plt.figure()
plt.plot(y1true, y1,'bo',y1true, yhatr1,'r.')
plt.title('euclid kernel: true versus noisy (blue) and estimated (red) observations')
plt.figure()
plt.plot(y1,'bo-',y1true,'go-',yhatr1,'r.-')
plt.title('euclid kernel: true (green), noisy (blue) and estimated (red) '+
'observations')
gp2 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_rbf,
scale=scale, ridgecoeff=1e-2)
yhatr2 = gp2.predict(xs1)
plt.figure()
plt.plot(y1true, y1,'bo',y1true, yhatr2,'r.')
plt.title('rbf kernel: true versus noisy (blue) and estimated (red) observations')
plt.figure()
plt.plot(y1,'bo-',y1true,'go-',yhatr2,'r.-')
plt.title('rbf kernel: true (green), noisy (blue) and estimated (red) '+
'observations')
#gp2.plot(y1)
if __name__ == '__main__':
example2()
#example2(m=1000, scale=0.01)
#example2(m=100, scale=0.5) # oversmoothing
#example2(m=2000, scale=0.005) # this looks good for rbf, zoom in
#example2(m=200, scale=0.01,stride=4)
example1()
#plt.show()