AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/nonparametric/kernels.py
2024-10-02 22:15:59 +04:00

577 lines
19 KiB
Python

"""
This models contains the Kernels for Kernel smoothing.
Hopefully in the future they may be reused/extended for other kernel based
method
References:
----------
Pointwise Kernel Confidence Bounds
(smoothconf)
http://fedc.wiwi.hu-berlin.de/xplore/ebooks/html/anr/anrhtmlframe62.html
"""
# pylint: disable-msg=C0103
# pylint: disable-msg=W0142
# pylint: disable-msg=E1101
# pylint: disable-msg=E0611
from statsmodels.compat.python import lzip, lfilter
import numpy as np
import scipy.integrate
from scipy.special import factorial
from numpy import exp, multiply, square, divide, subtract, inf
class NdKernel:
"""Generic N-dimensial kernel
Parameters
----------
n : int
The number of series for kernel estimates
kernels : list
kernels
Can be constructed from either
a) a list of n kernels which will be treated as
indepent marginals on a gaussian copula (specified by H)
or b) a single univariate kernel which will be applied radially to the
mahalanobis distance defined by H.
In the case of the Gaussian these are both equivalent, and the second constructiong
is prefered.
"""
def __init__(self, n, kernels = None, H = None):
if kernels is None:
kernels = Gaussian()
self._kernels = kernels
self.weights = None
if H is None:
H = np.matrix( np.identity(n))
self._H = H
self._Hrootinv = np.linalg.cholesky( H.I )
def getH(self):
"""Getter for kernel bandwidth, H"""
return self._H
def setH(self, value):
"""Setter for kernel bandwidth, H"""
self._H = value
H = property(getH, setH, doc="Kernel bandwidth matrix")
def density(self, xs, x):
n = len(xs)
#xs = self.in_domain( xs, xs, x )[0]
if len(xs)>0: ## Need to do product of marginal distributions
#w = np.sum([self(self._Hrootinv * (xx-x).T ) for xx in xs])/n
#vectorized does not work:
if self.weights is not None:
w = np.mean(self((xs-x) * self._Hrootinv).T * self.weights)/sum(self.weights)
else:
w = np.mean(self((xs-x) * self._Hrootinv )) #transposed
#w = np.mean([self(xd) for xd in ((xs-x) * self._Hrootinv)] ) #transposed
return w
else:
return np.nan
def _kernweight(self, x ):
"""returns the kernel weight for the independent multivariate kernel"""
if isinstance( self._kernels, CustomKernel ):
## Radial case
#d = x.T * x
#x is matrix, 2d, element wise sqrt looks wrong
#d = np.sqrt( x.T * x )
x = np.asarray(x)
#d = np.sqrt( (x * x).sum(-1) )
d = (x * x).sum(-1)
return self._kernels( np.asarray(d) )
def __call__(self, x):
"""
This simply returns the value of the kernel function at x
Does the same as weight if the function is normalised
"""
return self._kernweight(x)
class CustomKernel:
"""
Generic 1D Kernel object.
Can be constructed by selecting a standard named Kernel,
or providing a lambda expression and domain.
The domain allows some algorithms to run faster for finite domain kernels.
"""
# MC: Not sure how this will look in the end - or even still exist.
# Main purpose of this is to allow custom kernels and to allow speed up
# from finite support.
def __init__(self, shape, h = 1.0, domain = None, norm = None):
"""
shape should be a function taking and returning numeric type.
For sanity it should always return positive or zero but this is not
enforced in case you want to do weird things. Bear in mind that the
statistical tests etc. may not be valid for non-positive kernels.
The bandwidth of the kernel is supplied as h.
You may specify a domain as a list of 2 values [min, max], in which case
kernel will be treated as zero outside these values. This will speed up
calculation.
You may also specify the normalisation constant for the supplied Kernel.
If you do this number will be stored and used as the normalisation
without calculation. It is recommended you do this if you know the
constant, to speed up calculation. In particular if the shape function
provided is already normalised you should provide norm = 1.0.
Warning: I think several calculations assume that the kernel is
normalized. No tests for non-normalized kernel.
"""
self._normconst = norm # a value or None, if None, then calculate
self.domain = domain
self.weights = None
if callable(shape):
self._shape = shape
else:
raise TypeError("shape must be a callable object/function")
self._h = h
self._L2Norm = None
self._kernel_var = None
self._normal_reference_constant = None
self._order = None
def geth(self):
"""Getter for kernel bandwidth, h"""
return self._h
def seth(self, value):
"""Setter for kernel bandwidth, h"""
self._h = value
h = property(geth, seth, doc="Kernel Bandwidth")
def in_domain(self, xs, ys, x):
"""
Returns the filtered (xs, ys) based on the Kernel domain centred on x
"""
# Disable black-list functions: filter used for speed instead of
# list-comprehension
# pylint: disable-msg=W0141
def isInDomain(xy):
"""Used for filter to check if point is in the domain"""
u = (xy[0]-x)/self.h
return np.all((u >= self.domain[0]) & (u <= self.domain[1]))
if self.domain is None:
return (xs, ys)
else:
filtered = lfilter(isInDomain, lzip(xs, ys))
if len(filtered) > 0:
xs, ys = lzip(*filtered)
return (xs, ys)
else:
return ([], [])
def density(self, xs, x):
"""Returns the kernel density estimate for point x based on x-values
xs
"""
xs = np.asarray(xs)
n = len(xs) # before in_domain?
if self.weights is not None:
xs, weights = self.in_domain( xs, self.weights, x )
else:
xs = self.in_domain( xs, xs, x )[0]
xs = np.asarray(xs)
#print 'len(xs)', len(xs), x
if xs.ndim == 1:
xs = xs[:,None]
if len(xs)>0:
h = self.h
if self.weights is not None:
w = 1 / h * np.sum(self((xs-x)/h).T * weights, axis=1)
else:
w = 1. / (h * n) * np.sum(self((xs-x)/h), axis=0)
return w
else:
return np.nan
def density_var(self, density, nobs):
"""approximate pointwise variance for kernel density
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
kde_var : ndarray
estimated variance of the density estimate
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate.
"""
return np.asarray(density) * self.L2Norm / self.h / nobs
def density_confint(self, density, nobs, alpha=0.05):
"""approximate pointwise confidence interval for kernel density
The confidence interval is centered at the estimated density and
ignores the bias of the density estimate.
not verified
Parameters
----------
density : array_lie
pdf of the kernel density
nobs : int
number of observations used in the KDE estimation
Returns
-------
conf_int : ndarray
estimated confidence interval of the density estimate, lower bound
in first column and upper bound in second column
Notes
-----
This uses the asymptotic normal approximation to the distribution of
the density estimate. The lower bound can be negative for density
values close to zero.
"""
from scipy import stats
crit = stats.norm.isf(alpha / 2.)
density = np.asarray(density)
half_width = crit * np.sqrt(self.density_var(density, nobs))
conf_int = np.column_stack((density - half_width, density + half_width))
return conf_int
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs)>0:
w = np.sum(self((xs-x)/self.h))
#TODO: change the below to broadcasting when shape is sorted
v = np.sum([yy*self((xx-x)/self.h) for xx, yy in zip(xs, ys)])
return v / w
else:
return np.nan
def smoothvar(self, xs, ys, x):
"""Returns the kernel smoothing estimate of the variance at point x.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
sqresid = square( subtract(ys, fittedvals) )
w = np.sum(self((xs-x)/self.h))
v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)])
return v / w
else:
return np.nan
def smoothconf(self, xs, ys, x, alpha=0.05):
"""Returns the kernel smoothing estimate with confidence 1sigma bounds
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
#fittedvals = self.smooth(xs, ys, x) # x or xs in Haerdle
sqresid = square(
subtract(ys, fittedvals)
)
w = np.sum(self((xs-x)/self.h))
#var = sqresid.sum() / (len(sqresid) - 0) # nonlocal var ? JP just trying
v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)])
var = v / w
sd = np.sqrt(var)
K = self.L2Norm
yhat = self.smooth(xs, ys, x)
from scipy import stats
crit = stats.norm.isf(alpha / 2)
err = crit * sd * np.sqrt(K) / np.sqrt(w * self.h * self.norm_const)
return (yhat - err, yhat, yhat + err)
else:
return (np.nan, np.nan, np.nan)
@property
def L2Norm(self):
"""Returns the integral of the square of the kernal from -inf to inf"""
if self._L2Norm is None:
L2Func = lambda x: (self.norm_const*self._shape(x))**2
if self.domain is None:
self._L2Norm = scipy.integrate.quad(L2Func, -inf, inf)[0]
else:
self._L2Norm = scipy.integrate.quad(L2Func, self.domain[0],
self.domain[1])[0]
return self._L2Norm
@property
def norm_const(self):
"""
Normalising constant for kernel (integral from -inf to inf)
"""
if self._normconst is None:
if self.domain is None:
quadres = scipy.integrate.quad(self._shape, -inf, inf)
else:
quadres = scipy.integrate.quad(self._shape, self.domain[0],
self.domain[1])
self._normconst = 1.0/(quadres[0])
return self._normconst
@property
def kernel_var(self):
"""Returns the second moment of the kernel"""
if self._kernel_var is None:
func = lambda x: x**2 * self.norm_const * self._shape(x)
if self.domain is None:
self._kernel_var = scipy.integrate.quad(func, -inf, inf)[0]
else:
self._kernel_var = scipy.integrate.quad(func, self.domain[0],
self.domain[1])[0]
return self._kernel_var
def moments(self, n):
if n > 2:
msg = "Only first and second moment currently implemented"
raise NotImplementedError(msg)
if n == 1:
return 0
if n == 2:
return self.kernel_var
@property
def normal_reference_constant(self):
"""
Constant used for silverman normal reference asymtotic bandwidth
calculation.
C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1))
nu = kernel order
kap_nu = nu'th moment of kernel
R = kernel roughness (square of L^2 norm)
Note: L2Norm property returns square of norm.
"""
nu = self._order
if not nu == 2:
msg = "Only implemented for second order kernels"
raise NotImplementedError(msg)
if self._normal_reference_constant is None:
C = np.pi**(.5) * factorial(nu)**3 * self.L2Norm
C /= (2 * nu * factorial(2 * nu) * self.moments(nu)**2)
C = 2*C**(1.0/(2*nu+1))
self._normal_reference_constant = C
return self._normal_reference_constant
def weight(self, x):
"""This returns the normalised weight at distance x"""
return self.norm_const*self._shape(x)
def __call__(self, x):
"""
This simply returns the value of the kernel function at x
Does the same as weight if the function is normalised
"""
return self._shape(x)
class Uniform(CustomKernel):
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 0.5 * np.ones(x.shape), h=h,
domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 0.5
self._kernel_var = 1. / 3
self._order = 2
class Triangular(CustomKernel):
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 1 - abs(x), h=h,
domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 2.0/3.0
self._kernel_var = 1. / 6
self._order = 2
class Epanechnikov(CustomKernel):
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 0.75*(1 - x*x), h=h,
domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 0.6
self._kernel_var = 0.2
self._order = 2
class Biweight(CustomKernel):
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 0.9375*(1 - x*x)**2, h=h,
domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 5.0/7.0
self._kernel_var = 1. / 7
self._order = 2
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Biweight.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
w = np.sum(square(subtract(1, square(divide(subtract(xs, x),
self.h)))))
v = np.sum(multiply(ys, square(subtract(1, square(divide(
subtract(xs, x), self.h))))))
return v / w
else:
return np.nan
def smoothvar(self, xs, ys, x):
"""
Returns the kernel smoothing estimate of the variance at point x.
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
rs = square(subtract(ys, fittedvals))
w = np.sum(square(subtract(1.0, square(divide(subtract(xs, x),
self.h)))))
v = np.sum(multiply(rs, square(subtract(1, square(divide(
subtract(xs, x), self.h))))))
return v / w
else:
return np.nan
def smoothconf_(self, xs, ys, x):
"""Returns the kernel smoothing estimate with confidence 1sigma bounds
"""
xs, ys = self.in_domain(xs, ys, x)
if len(xs) > 0:
fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs])
rs = square(subtract(ys, fittedvals))
w = np.sum(square(subtract(1.0, square(divide(subtract(xs, x),
self.h)))))
v = np.sum(multiply(rs, square(subtract(1, square(divide(
subtract(xs, x), self.h))))))
var = v / w
sd = np.sqrt(var)
K = self.L2Norm
yhat = self.smooth(xs, ys, x)
err = sd * K / np.sqrt(0.9375 * w * self.h)
return (yhat - err, yhat, yhat + err)
else:
return (np.nan, np.nan, np.nan)
class Triweight(CustomKernel):
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 1.09375*(1 - x*x)**3, h=h,
domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 350.0/429.0
self._kernel_var = 1. / 9
self._order = 2
class Gaussian(CustomKernel):
"""
Gaussian (Normal) Kernel
K(u) = 1 / (sqrt(2*pi)) exp(-0.5 u**2)
"""
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape = lambda x: 0.3989422804014327 *
np.exp(-x**2/2.0), h = h, domain = None, norm = 1.0)
self._L2Norm = 1.0/(2.0*np.sqrt(np.pi))
self._kernel_var = 1.0
self._order = 2
def smooth(self, xs, ys, x):
"""Returns the kernel smoothing estimate for point x based on x-values
xs and y-values ys.
Not expected to be called by the user.
Special implementation optimized for Gaussian.
"""
w = np.sum(exp(multiply(square(divide(subtract(xs, x),
self.h)),-0.5)))
v = np.sum(multiply(ys, exp(multiply(square(divide(subtract(xs, x),
self.h)), -0.5))))
return v/w
class Cosine(CustomKernel):
"""
Cosine Kernel
K(u) = pi/4 cos(0.5 * pi * u) between -1.0 and 1.0
"""
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 0.78539816339744828 *
np.cos(np.pi/2.0 * x), h=h, domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = np.pi**2/16.0
self._kernel_var = 0.1894305308612978 # = 1 - 8 / np.pi**2
self._order = 2
class Cosine2(CustomKernel):
"""
Cosine2 Kernel
K(u) = 1 + cos(2 * pi * u) between -0.5 and 0.5
Note: this is the same Cosine kernel that Stata uses
"""
def __init__(self, h=1.0):
CustomKernel.__init__(self, shape=lambda x: 1 + np.cos(2.0 * np.pi * x)
, h=h, domain=[-0.5, 0.5], norm = 1.0)
self._L2Norm = 1.5
self._kernel_var = 0.03267274151216444 # = 1/12. - 0.5 / np.pi**2
self._order = 2
class Tricube(CustomKernel):
"""
Tricube Kernel
K(u) = 0.864197530864 * (1 - abs(x)**3)**3 between -1.0 and 1.0
"""
def __init__(self,h=1.0):
CustomKernel.__init__(self,shape=lambda x: 0.864197530864 * (1 - abs(x)**3)**3,
h=h, domain=[-1.0, 1.0], norm = 1.0)
self._L2Norm = 175.0/247.0
self._kernel_var = 35.0/243.0
self._order = 2