AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/sandbox/gam.py
2024-10-02 22:15:59 +04:00

434 lines
15 KiB
Python

"""
Generalized additive models
Requirements for smoothers
--------------------------
smooth(y, weights=xxx) : ? no return ? alias for fit
predict(x=None) : smoothed values, fittedvalues or for new exog
df_fit() : degress of freedom of fit ?
Notes
-----
- using PolySmoother works for AdditiveModel, and GAM with Poisson and Binomial
- testfailure with Gamma, no other families tested
- there is still an indeterminacy in the split up of the constant across
components (smoothers) and alpha, sum, i.e. constant, looks good.
- role of offset, that I have not tried to figure out yet
Refactoring
-----------
currently result is attached to model instead of other way around
split up Result in class for AdditiveModel and for GAM,
subclass GLMResults, needs verification that result statistics are appropriate
how much inheritance, double inheritance?
renamings and cleanup
interface to other smoothers, scipy splines
basic unittests as support for refactoring exist, but we should have a test
case for gamma and the others. Advantage of PolySmoother is that we can
benchmark against the parametric GLM results.
"""
# JP:
# changes: use PolySmoother instead of crashing bspline
# TODO: check/catalogue required interface of a smoother
# TODO: replace default smoother by corresponding function to initialize
# other smoothers
# TODO: fix iteration, do not define class with iterator methods, use looping;
# add maximum iteration and other optional stop criteria
# fixed some of the dimension problems in PolySmoother,
# now graph for example looks good
# NOTE: example script is now in examples folder
#update: I did some of the above, see module docstring
import numpy as np
from statsmodels.genmod import families
from statsmodels.sandbox.nonparametric.smoothers import PolySmoother
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.tools.sm_exceptions import IterationLimitWarning, iteration_limit_doc
import warnings
DEBUG = False
def default_smoother(x, s_arg=None):
'''
'''
# _x = x.copy()
# _x.sort()
_x = np.sort(x)
n = x.shape[0]
# taken form smooth.spline in R
#if n < 50:
if n < 500:
nknots = n
else:
a1 = np.log(50) / np.log(2)
a2 = np.log(100) / np.log(2)
a3 = np.log(140) / np.log(2)
a4 = np.log(200) / np.log(2)
if n < 200:
nknots = 2**(a1 + (a2 - a1) * (n - 50)/150.)
elif n < 800:
nknots = 2**(a2 + (a3 - a2) * (n - 200)/600.)
elif n < 3200:
nknots = 2**(a3 + (a4 - a3) * (n - 800)/2400.)
else:
nknots = 200 + (n - 3200.)**0.2
knots = _x[np.linspace(0, n-1, nknots).astype(np.int32)]
#s = SmoothingSpline(knots, x=x.copy())
#when I set order=2, I get nans in the GAM prediction
if s_arg is None:
order = 3 #what about knots? need smoother *args or **kwds
else:
order = s_arg
s = PolySmoother(order, x=x.copy()) #TODO: change order, why copy?
# s.gram(d=2)
# s.target_df = 5
return s
class Offset:
def __init__(self, fn, offset):
self.fn = fn
self.offset = offset
def __call__(self, *args, **kw):
return self.fn(*args, **kw) + self.offset
class Results:
def __init__(self, Y, alpha, exog, smoothers, family, offset):
self.nobs, self.k_vars = exog.shape #assumes exog is 2d
#weird: If I put the previous line after the definition of self.mu,
# then the attributed do not get added
self.Y = Y
self.alpha = alpha
self.smoothers = smoothers
self.offset = offset
self.family = family
self.exog = exog
self.offset = offset
self.mu = self.linkinversepredict(exog) #TODO: remove __call__
def __call__(self, exog):
'''expected value ? check new GLM, same as mu for given exog
maybe remove this
'''
return self.linkinversepredict(exog)
def linkinversepredict(self, exog): #TODO what's the name in GLM
'''expected value ? check new GLM, same as mu for given exog
'''
return self.family.link.inverse(self.predict(exog))
def predict(self, exog):
'''predict response, sum of smoothed components
TODO: What's this in the case of GLM, corresponds to X*beta ?
'''
#note: sum is here over axis=0,
#TODO: transpose in smoothed and sum over axis=1
#BUG: there is some inconsistent orientation somewhere
#temporary hack, will not work for 1d
#print dir(self)
#print 'self.nobs, self.k_vars', self.nobs, self.k_vars
exog_smoothed = self.smoothed(exog)
#print 'exog_smoothed.shape', exog_smoothed.shape
if exog_smoothed.shape[0] == self.k_vars:
import warnings
warnings.warn("old orientation, colvars, will go away",
FutureWarning)
return np.sum(self.smoothed(exog), axis=0) + self.alpha
if exog_smoothed.shape[1] == self.k_vars:
return np.sum(exog_smoothed, axis=1) + self.alpha
else:
raise ValueError('shape mismatch in predict')
def smoothed(self, exog):
'''get smoothed prediction for each component
'''
#bug: with exog in predict I get a shape error
#print 'smoothed', exog.shape, self.smoothers[0].predict(exog).shape
#there was a mistake exog did not have column index i
return np.array([self.smoothers[i].predict(exog[:,i]) + self.offset[i]
#should not be a mistake because exog[:,i] is attached to smoother, but
#it is for different exog
#return np.array([self.smoothers[i].predict() + self.offset[i]
for i in range(exog.shape[1])]).T
def smoothed_demeaned(self, exog):
components = self.smoothed(exog)
means = components.mean(0)
constant = means.sum() + self.alpha
components_demeaned = components - means
return components_demeaned, constant
class AdditiveModel:
'''additive model with non-parametric, smoothed components
Parameters
----------
exog : ndarray
smoothers : None or list of smoother instances
smoother instances not yet checked
weights : None or ndarray
family : None or family instance
I think only used because of shared results with GAM and subclassing.
If None, then Gaussian is used.
'''
def __init__(self, exog, smoothers=None, weights=None, family=None):
self.exog = exog
if weights is not None:
self.weights = weights
else:
self.weights = np.ones(self.exog.shape[0])
self.smoothers = smoothers or [default_smoother(exog[:,i]) for i in range(exog.shape[1])]
#TODO: why do we set here df, refactoring temporary?
for i in range(exog.shape[1]):
self.smoothers[i].df = 10
if family is None:
self.family = families.Gaussian()
else:
self.family = family
#self.family = families.Gaussian()
def _iter__(self):
'''initialize iteration ?, should be removed
'''
self.iter = 0
self.dev = np.inf
return self
def next(self):
'''internal calculation for one fit iteration
BUG: I think this does not improve, what is supposed to improve
offset does not seem to be used, neither an old alpha
The smoothers keep coef/params from previous iteration
'''
_results = self.results
Y = self.results.Y
mu = _results.predict(self.exog)
#TODO offset is never used ?
offset = np.zeros(self.exog.shape[1], np.float64)
alpha = (Y * self.weights).sum() / self.weights.sum()
for i in range(self.exog.shape[1]):
tmp = self.smoothers[i].predict()
#TODO: check what smooth needs to do
#smooth (alias for fit, fit given x to new y and attach
#print 'next shape', (Y - alpha - mu + tmp).shape
bad = np.isnan(Y - alpha - mu + tmp).any()
if bad: #temporary assert while debugging
print(Y, alpha, mu, tmp)
raise ValueError("nan encountered")
#self.smoothers[i].smooth(Y - alpha - mu + tmp,
self.smoothers[i].smooth(Y - mu + tmp,
weights=self.weights)
tmp2 = self.smoothers[i].predict() #fittedvalues of previous smooth/fit
self.results.offset[i] = -(tmp2*self.weights).sum() / self.weights.sum()
#self.offset used in smoothed
if DEBUG:
print(self.smoothers[i].params)
mu += tmp2 - tmp
#change setting offset here: tests still pass, offset equal to constant
#in component ??? what's the effect of offset
offset = self.results.offset
#print self.iter
#self.iter += 1 #missing incrementing of iter counter NOT
return Results(Y, alpha, self.exog, self.smoothers, self.family, offset)
def cont(self):
'''condition to continue iteration loop
Parameters
----------
tol
Returns
-------
cont : bool
If true, then iteration should be continued.
'''
self.iter += 1 #moved here to always count, not necessary
if DEBUG:
print(self.iter, self.results.Y.shape)
print(self.results.predict(self.exog).shape, self.weights.shape)
curdev = (((self.results.Y - self.results.predict(self.exog))**2) * self.weights).sum()
if self.iter > self.maxiter: #kill it, no max iterationoption
return False
if np.fabs((self.dev - curdev) / curdev) < self.rtol:
self.dev = curdev
return False
#self.iter += 1
self.dev = curdev
return True
def df_resid(self):
'''degrees of freedom of residuals, ddof is sum of all smoothers df
'''
return self.results.Y.shape[0] - np.array([self.smoothers[i].df_fit() for i in range(self.exog.shape[1])]).sum()
def estimate_scale(self):
'''estimate standard deviation of residuals
'''
#TODO: remove use of self.results.__call__
return ((self.results.Y - self.results(self.exog))**2).sum() / self.df_resid()
def fit(self, Y, rtol=1.0e-06, maxiter=30):
'''fit the model to a given endogenous variable Y
This needs to change for consistency with statsmodels
'''
self.rtol = rtol
self.maxiter = maxiter
#iter(self) # what does this do? anything?
self._iter__()
mu = 0
alpha = (Y * self.weights).sum() / self.weights.sum()
offset = np.zeros(self.exog.shape[1], np.float64)
for i in range(self.exog.shape[1]):
self.smoothers[i].smooth(Y - alpha - mu,
weights=self.weights)
tmp = self.smoothers[i].predict()
offset[i] = (tmp * self.weights).sum() / self.weights.sum()
tmp -= tmp.sum()
mu += tmp
self.results = Results(Y, alpha, self.exog, self.smoothers, self.family, offset)
while self.cont():
self.results = self.next()
if self.iter >= self.maxiter:
warnings.warn(iteration_limit_doc, IterationLimitWarning)
return self.results
class Model(GLM, AdditiveModel):
#class Model(AdditiveModel):
#TODO: what does GLM do? Is it actually used ?
#only used in __init__, dropping it does not change results
#but where gets family attached now? - weird, it's Gaussian in this case now
#also where is the link defined?
#AdditiveModel overwrites family and sets it to Gaussian - corrected
#I think both GLM and AdditiveModel subclassing is only used in __init__
#niter = 2
# def __init__(self, exog, smoothers=None, family=family.Gaussian()):
# GLM.__init__(self, exog, family=family)
# AdditiveModel.__init__(self, exog, smoothers=smoothers)
# self.family = family
def __init__(self, endog, exog, smoothers=None, family=families.Gaussian()):
#self.family = family
#TODO: inconsistent super __init__
AdditiveModel.__init__(self, exog, smoothers=smoothers, family=family)
GLM.__init__(self, endog, exog, family=family)
assert self.family is family #make sure we got the right family
def next(self):
_results = self.results
Y = _results.Y
if np.isnan(self.weights).all():
print("nanweights1")
_results.mu = self.family.link.inverse(_results.predict(self.exog))
#eta = _results.predict(self.exog)
#_results.mu = self.family.fitted(eta)
weights = self.family.weights(_results.mu)
if np.isnan(weights).all():
self.weights = weights
print("nanweights2")
self.weights = weights
if DEBUG:
print('deriv isnan', np.isnan(self.family.link.deriv(_results.mu)).any())
#Z = _results.predict(self.exog) + \
Z = _results.predict(self.exog) + \
self.family.link.deriv(_results.mu) * (Y - _results.mu) #- _results.alpha #?added alpha
m = AdditiveModel(self.exog, smoothers=self.smoothers,
weights=self.weights, family=self.family)
#TODO: I do not know what the next two lines do, Z, Y ? which is endog?
#Y is original endog, Z is endog for the next step in the iterative solver
_results = m.fit(Z)
self.history.append([Z, _results.predict(self.exog)])
_results.Y = Y
_results.mu = self.family.link.inverse(_results.predict(self.exog))
self.iter += 1
self.results = _results
return _results
def estimate_scale(self, Y=None):
"""
Return Pearson\'s X^2 estimate of scale.
"""
if Y is None:
Y = self.Y
resid = Y - self.results.mu
return (np.power(resid, 2) / self.family.variance(self.results.mu)).sum() \
/ self.df_resid #TODO check this
#/ AdditiveModel.df_resid(self) #what is the class doing here?
def fit(self, Y, rtol=1.0e-06, maxiter=30):
self.rtol = rtol
self.maxiter = maxiter
self.Y = np.asarray(Y, np.float64)
self.history = []
#iter(self)
self._iter__()
#TODO code duplication with next?
alpha = self.Y.mean()
mu0 = self.family.starting_mu(Y)
#Z = self.family.link(alpha) + self.family.link.deriv(alpha) * (Y - alpha)
Z = self.family.link(alpha) + self.family.link.deriv(alpha) * (Y - mu0)
m = AdditiveModel(self.exog, smoothers=self.smoothers, family=self.family)
self.results = m.fit(Z)
self.results.mu = self.family.link.inverse(self.results.predict(self.exog))
self.results.Y = Y
while self.cont():
self.results = self.next()
self.scale = self.results.scale = self.estimate_scale()
if self.iter >= self.maxiter:
import warnings
warnings.warn(iteration_limit_doc, IterationLimitWarning)
return self.results