AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/miscmodels/tests/test_poisson.py
2024-10-02 22:15:59 +04:00

211 lines
7.7 KiB
Python

'''Testing GenericLikelihoodModel variations on Poisson
'''
import pytest
import numpy as np
from numpy.testing import assert_almost_equal
from scipy import stats
import statsmodels.api as sm
from statsmodels.miscmodels.count import PoissonGMLE, PoissonOffsetGMLE, \
PoissonZiGMLE
from statsmodels.discrete.discrete_model import Poisson
from statsmodels.tools.sm_exceptions import ValueWarning
DEC = 4
DEC4 = 4
DEC5 = 5
class CompareMixin:
def test_params(self):
assert_almost_equal(self.res.params, self.res_glm.params, DEC5)
assert_almost_equal(self.res.params, self.res_discrete.params, DEC5)
def test_cov_params(self):
assert_almost_equal(self.res.bse, self.res_glm.bse, DEC5)
assert_almost_equal(self.res.bse, self.res_discrete.bse, DEC5)
#TODO check problem with the following, precision is low,
#dof error? last t-value is 22, 23, error is around 1% for PoissonMLE
#this was with constant=1,
#now changed constant=0.1 to make it less significant and test passes
#overall precision for tstat looks like 1%
#assert_almost_equal(self.res.tval, self.res_glm.t(), DEC)
assert_almost_equal(self.res.tvalues, self.res_discrete.tvalues, DEC4)
#assert_almost_equal(self.res.params, self.res_discrete.params)
assert_almost_equal(self.res.pvalues, self.res_discrete.pvalues, DEC)
def test_ttest(self):
tt = self.res.t_test(np.eye(len(self.res.params)))
from scipy import stats
pvalue = stats.norm.sf(np.abs(tt.tvalue)) * 2
assert_almost_equal(tt.tvalue, self.res.tvalues, DEC)
assert_almost_equal(pvalue, self.res.pvalues, DEC)
def test_df(self):
res = self.res
k_extra = getattr(self, "k_extra", 0)
nobs, k_vars = res.model.exog.shape
assert res.df_resid == nobs - k_vars - k_extra
assert res.df_model == k_vars - 1 # -1 for constant
assert len(res.params) == k_vars + k_extra
@pytest.mark.smoke
def test_summary(self):
self.res.summary()
class TestPoissonMLE(CompareMixin):
@classmethod
def setup_class(cls):
# generate artificial data
np.random.seed(98765678)
nobs = 200
rvs = np.random.randn(nobs,6)
data_exog = rvs
data_exog = sm.add_constant(data_exog, prepend=False)
xbeta = 0.1 + 0.1*rvs.sum(1)
data_endog = np.random.poisson(np.exp(xbeta))
#estimate discretemod.Poisson as benchmark
cls.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)
mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
cls.res_glm = mod_glm.fit()
#estimate generic MLE
cls.mod = PoissonGMLE(data_endog, data_exog)
cls.res = cls.mod.fit(start_params=0.9 * cls.res_discrete.params,
method='bfgs', disp=0)
def test_predict_distribution(self):
res = self.res
model = self.mod
with pytest.raises(ValueError):
# No "result" attribute
model.predict_distribution(model.exog)
try:
model.result = res
dist = model.predict_distribution(model.exog)
assert isinstance(dist, stats._distn_infrastructure.rv_frozen)
assert_almost_equal(dist.mean(),
np.exp(model.exog.dot(res.params)),
15)
finally:
# leave the model object how we found it
model.__delattr__("result")
class TestPoissonOffset(CompareMixin):
#this uses the first exog to construct an offset variable
@classmethod
def setup_class(cls):
# generate artificial data
np.random.seed(98765678)
nobs = 200
rvs = np.random.randn(nobs,6)
data_exog = rvs
data_exog = sm.add_constant(data_exog, prepend=False)
xbeta = 1 + 0.1*rvs.sum(1)
data_endog = np.random.poisson(np.exp(xbeta))
mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
cls.res_glm = mod_glm.fit()
#estimate generic MLE
#cls.mod = PoissonGMLE(data_endog, data_exog)
#res = cls.mod.fit()
#create offset variable based on first exog
cls.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)
offset = cls.res_discrete.params[0] * data_exog[:,0] #1d ???
#estimate discretemod.Poisson as benchmark, now has offset
cls.res_discrete = Poisson(data_endog, data_exog[:,1:],
offset=offset).fit(disp=0)
mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
cls.res_glm = mod_glm.fit()
#cls.res = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset).fit(start_params = np.ones(6)/2., method='nm')
modo = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset)
cls.res = modo.fit(start_params = 0.9*cls.res_discrete.params,
method='bfgs', disp=0)
def test_params(self):
assert_almost_equal(self.res.params, self.res_glm.params[1:], DEC)
assert_almost_equal(self.res.params, self.res_discrete.params, DEC)
def test_cov_params(self):
assert_almost_equal(self.res.bse, self.res_glm.bse[1:], DEC-1)
assert_almost_equal(self.res.bse, self.res_discrete.bse, DEC5)
#precision of next is very low ???
#assert_almost_equal(self.res.tval, self.res_glm.t()[1:], DEC)
#assert_almost_equal(self.res.params, self.res_discrete.params)
#DEC = DEC - 1
class TestPoissonZi(CompareMixin):
#this uses the first exog to construct an offset variable
@classmethod
def setup_class(cls):
# generate artificial data
np.random.seed(98765678)
nobs = 200
rvs = np.random.randn(nobs,6)
data_exog = rvs
data_exog = sm.add_constant(data_exog, prepend=False)
xbeta = 1 + 0.1*rvs.sum(1)
data_endog = np.random.poisson(np.exp(xbeta))
cls.k_extra = 1
mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
cls.res_glm = mod_glm.fit()
#estimate generic MLE
#cls.mod = PoissonGMLE(data_endog, data_exog)
#res = cls.mod.fit()
#create offset variable based on first exog
cls.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)
offset = cls.res_discrete.params[0] * data_exog[:,0] #1d ???
#estimate discretemod.Poisson as benchmark, now has offset
cls.res_discrete = Poisson(data_endog, data_exog[:,1:], offset=offset).fit(disp=0)
# Note : ZI has one extra parameter
cls.res = PoissonZiGMLE(data_endog, data_exog[:,1:], offset=offset).fit(
start_params=np.r_[0.9*cls.res_discrete.params,10],
method='bfgs', disp=0)
cls.decimal = 4
def test_params(self):
assert_almost_equal(self.res.params[:-1], self.res_glm.params[1:], self.decimal)
assert_almost_equal(self.res.params[:-1], self.res_discrete.params, self.decimal)
def test_cov_params(self):
#skip until I have test with zero-inflated data
#use bsejac for now since it seems to work
assert_almost_equal(self.res.bsejac[:-1], self.res_glm.bse[1:], self.decimal-2)
assert_almost_equal(self.res.bsejac[:-1], self.res_discrete.bse, self.decimal-2)
#assert_almost_equal(self.res.tval[:-1], self.res_glm.t()[1:], self.decimal)
def test_exog_names_warning(self):
mod = self.res.model
mod1 = PoissonOffsetGMLE(mod.endog, mod.exog, offset=mod.offset)
from numpy.testing import assert_warns
mod1.data.xnames = mod1.data.xnames * 2
assert_warns(ValueWarning, mod1.fit, disp=0)