AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/iolib/tests/test_summary.py
2024-10-02 22:15:59 +04:00

120 lines
3.2 KiB
Python

'''examples to check summary, not converted to tests yet
'''
import numpy as np # noqa: F401
import pytest
from numpy.testing import assert_equal
from statsmodels.datasets import macrodata
from statsmodels.tools.tools import add_constant
from statsmodels.regression.linear_model import OLS
def test_escaped_variable_name():
# Rename 'cpi' column to 'CPI_'
data = macrodata.load().data
data.rename(columns={'cpi': 'CPI_'}, inplace=True)
mod = OLS.from_formula('CPI_ ~ 1 + np.log(realgdp)', data=data)
res = mod.fit()
assert 'CPI\\_' in res.summary().as_latex()
assert 'CPI_' in res.summary().as_text()
def test_wrong_len_xname(reset_randomstate):
y = np.random.randn(100)
x = np.random.randn(100, 2)
res = OLS(y, x).fit()
with pytest.raises(ValueError):
res.summary(xname=['x1'])
with pytest.raises(ValueError):
res.summary(xname=['x1', 'x2', 'x3'])
class TestSummaryLatex:
def test__repr_latex_(self):
desired = r'''
\begin{center}
\begin{tabular}{lcccccc}
\toprule
& \textbf{coef} & \textbf{std err} & \textbf{t} & \textbf{P$> |$t$|$} & \textbf{[0.025} & \textbf{0.975]} \\
\midrule
\textbf{const} & 7.2248 & 0.866 & 8.346 & 0.000 & 5.406 & 9.044 \\
\textbf{x1} & -0.6609 & 0.177 & -3.736 & 0.002 & -1.033 & -0.289 \\
\bottomrule
\end{tabular}
\end{center}
'''
x = [1, 5, 7, 3, 5, 5, 8, 3, 3, 4, 6, 4, 2, 7, 4, 2, 1, 9, 2, 6]
x = add_constant(x)
y = [6, 4, 2, 7, 4, 2, 1, 9, 2, 6, 1, 5, 7, 3, 5, 5, 8, 3, 3, 4]
reg = OLS(y, x).fit()
actual = reg.summary().tables[1]._repr_latex_()
actual = '\n%s\n' % actual
assert_equal(actual, desired)
if __name__ == '__main__':
from statsmodels.regression.tests.test_regression import TestOLS
#def mytest():
aregression = TestOLS()
TestOLS.setup_class()
results = aregression.res1
r_summary = str(results.summary_old())
print(r_summary)
olsres = results
print('\n\n')
r_summary = str(results.summary())
print(r_summary)
print('\n\n')
from statsmodels.discrete.tests.test_discrete import TestProbitNewton
aregression = TestProbitNewton()
TestProbitNewton.setup_class()
results = aregression.res1
r_summary = str(results.summary())
print(r_summary)
print('\n\n')
probres = results
from statsmodels.robust.tests.test_rlm import TestHampel
aregression = TestHampel()
#TestHampel.setup_class()
results = aregression.res1
r_summary = str(results.summary())
print(r_summary)
rlmres = results
print('\n\n')
from statsmodels.genmod.tests.test_glm import TestGlmBinomial
aregression = TestGlmBinomial()
#TestGlmBinomial.setup_class()
results = aregression.res1
r_summary = str(results.summary())
print(r_summary)
#print(results.summary2(return_fmt='latex'))
#print(results.summary2(return_fmt='csv'))
smry = olsres.summary()
print(smry.as_csv())
# import matplotlib.pyplot as plt
# plt.plot(rlmres.model.endog,'o')
# plt.plot(rlmres.fittedvalues,'-')
#
# plt.show()