AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/duration/hazard_regression.py
2024-10-02 22:15:59 +04:00

1760 lines
57 KiB
Python

"""
Implementation of proportional hazards regression models for duration
data that may be censored ("Cox models").
References
----------
T Therneau (1996). Extending the Cox model. Technical report.
http://www.mayo.edu/research/documents/biostat-58pdf/DOC-10027288
G Rodriguez (2005). Non-parametric estimation in survival models.
http://data.princeton.edu/pop509/NonParametricSurvival.pdf
B Gillespie (2006). Checking the assumptions in the Cox proportional
hazards model.
http://www.mwsug.org/proceedings/2006/stats/MWSUG-2006-SD08.pdf
"""
import numpy as np
from statsmodels.base import model
import statsmodels.base.model as base
from statsmodels.tools.decorators import cache_readonly
from statsmodels.compat.pandas import Appender
_predict_docstring = """
Returns predicted values from the proportional hazards
regression model.
Parameters
----------%(params_doc)s
exog : array_like
Data to use as `exog` in forming predictions. If not
provided, the `exog` values from the model used to fit the
data are used.%(cov_params_doc)s
endog : array_like
Duration (time) values at which the predictions are made.
Only used if pred_type is either 'cumhaz' or 'surv'. If
using model `exog`, defaults to model `endog` (time), but
may be provided explicitly to make predictions at
alternative times.
strata : array_like
A vector of stratum values used to form the predictions.
Not used (may be 'None') if pred_type is 'lhr' or 'hr'.
If `exog` is None, the model stratum values are used. If
`exog` is not None and pred_type is 'surv' or 'cumhaz',
stratum values must be provided (unless there is only one
stratum).
offset : array_like
Offset values used to create the predicted values.
pred_type : str
If 'lhr', returns log hazard ratios, if 'hr' returns
hazard ratios, if 'surv' returns the survival function, if
'cumhaz' returns the cumulative hazard function.
pred_only : bool
If True, returns only an array of predicted values. Otherwise
returns a bunch containing the predicted values and standard
errors.
Returns
-------
A bunch containing two fields: `predicted_values` and
`standard_errors`.
Notes
-----
Standard errors are only returned when predicting the log
hazard ratio (pred_type is 'lhr').
Types `surv` and `cumhaz` require estimation of the cumulative
hazard function.
"""
_predict_params_doc = """
params : array_like
The proportional hazards model parameters."""
_predict_cov_params_docstring = """
cov_params : array_like
The covariance matrix of the estimated `params` vector,
used to obtain prediction errors if pred_type='lhr',
otherwise optional."""
class PHSurvivalTime:
def __init__(self, time, status, exog, strata=None, entry=None,
offset=None):
"""
Represent a collection of survival times with possible
stratification and left truncation.
Parameters
----------
time : array_like
The times at which either the event (failure) occurs or
the observation is censored.
status : array_like
Indicates whether the event (failure) occurs at `time`
(`status` is 1), or if `time` is a censoring time (`status`
is 0).
exog : array_like
The exogeneous (covariate) data matrix, cases are rows and
variables are columns.
strata : array_like
Grouping variable defining the strata. If None, all
observations are in a single stratum.
entry : array_like
Entry (left truncation) times. The observation is not
part of the risk set for times before the entry time. If
None, the entry time is treated as being zero, which
gives no left truncation. The entry time must be less
than or equal to `time`.
offset : array_like
An optional array of offsets
"""
# Default strata
if strata is None:
strata = np.zeros(len(time), dtype=np.int32)
# Default entry times
if entry is None:
entry = np.zeros(len(time))
# Parameter validity checks.
self._check(time, status, strata, entry)
# Get the row indices for the cases in each stratum
stu = np.unique(strata)
sth = {x: [] for x in stu}
for i,k in enumerate(strata):
sth[k].append(i)
stratum_rows = [np.asarray(sth[k], dtype=np.int32) for k in stu]
stratum_names = stu
# Remove strata with no events
ix = [i for i,ix in enumerate(stratum_rows) if status[ix].sum() > 0]
self.nstrat_orig = len(stratum_rows)
stratum_rows = [stratum_rows[i] for i in ix]
stratum_names = [stratum_names[i] for i in ix]
# The number of strata
nstrat = len(stratum_rows)
self.nstrat = nstrat
# Remove subjects whose entry time occurs after the last event
# in their stratum.
for stx,ix in enumerate(stratum_rows):
last_failure = max(time[ix][status[ix] == 1])
# Stata uses < here, R uses <=
ii = [i for i,t in enumerate(entry[ix]) if
t <= last_failure]
stratum_rows[stx] = stratum_rows[stx][ii]
# Remove subjects who are censored before the first event in
# their stratum.
for stx,ix in enumerate(stratum_rows):
first_failure = min(time[ix][status[ix] == 1])
ii = [i for i,t in enumerate(time[ix]) if
t >= first_failure]
stratum_rows[stx] = stratum_rows[stx][ii]
# Order by time within each stratum
for stx,ix in enumerate(stratum_rows):
ii = np.argsort(time[ix])
stratum_rows[stx] = stratum_rows[stx][ii]
if offset is not None:
self.offset_s = []
for stx in range(nstrat):
self.offset_s.append(offset[stratum_rows[stx]])
else:
self.offset_s = None
# Number of informative subjects
self.n_obs = sum([len(ix) for ix in stratum_rows])
self.stratum_rows = stratum_rows
self.stratum_names = stratum_names
# Split everything by stratum
self.time_s = self._split(time)
self.exog_s = self._split(exog)
self.status_s = self._split(status)
self.entry_s = self._split(entry)
# Precalculate some indices needed to fit Cox models.
# Distinct failure times within a stratum are always taken to
# be sorted in ascending order.
#
# ufailt_ix[stx][k] is a list of indices for subjects who fail
# at the k^th sorted unique failure time in stratum stx
#
# risk_enter[stx][k] is a list of indices for subjects who
# enter the risk set at the k^th sorted unique failure time in
# stratum stx
#
# risk_exit[stx][k] is a list of indices for subjects who exit
# the risk set at the k^th sorted unique failure time in
# stratum stx
self.ufailt_ix, self.risk_enter, self.risk_exit, self.ufailt =\
[], [], [], []
for stx in range(self.nstrat):
# All failure times
ift = np.flatnonzero(self.status_s[stx] == 1)
ft = self.time_s[stx][ift]
# Unique failure times
uft = np.unique(ft)
nuft = len(uft)
# Indices of cases that fail at each unique failure time
#uft_map = {x:i for i,x in enumerate(uft)} # requires >=2.7
uft_map = {x: i for i,x in enumerate(uft)} # 2.6
uft_ix = [[] for k in range(nuft)]
for ix,ti in zip(ift,ft):
uft_ix[uft_map[ti]].append(ix)
# Indices of cases (failed or censored) that enter the
# risk set at each unique failure time.
risk_enter1 = [[] for k in range(nuft)]
for i,t in enumerate(self.time_s[stx]):
ix = np.searchsorted(uft, t, "right") - 1
if ix >= 0:
risk_enter1[ix].append(i)
# Indices of cases (failed or censored) that exit the
# risk set at each unique failure time.
risk_exit1 = [[] for k in range(nuft)]
for i,t in enumerate(self.entry_s[stx]):
ix = np.searchsorted(uft, t)
risk_exit1[ix].append(i)
self.ufailt.append(uft)
self.ufailt_ix.append([np.asarray(x, dtype=np.int32)
for x in uft_ix])
self.risk_enter.append([np.asarray(x, dtype=np.int32)
for x in risk_enter1])
self.risk_exit.append([np.asarray(x, dtype=np.int32)
for x in risk_exit1])
def _split(self, x):
v = []
if x.ndim == 1:
for ix in self.stratum_rows:
v.append(x[ix])
else:
for ix in self.stratum_rows:
v.append(x[ix, :])
return v
def _check(self, time, status, strata, entry):
n1, n2, n3, n4 = len(time), len(status), len(strata),\
len(entry)
nv = [n1, n2, n3, n4]
if max(nv) != min(nv):
raise ValueError("endog, status, strata, and " +
"entry must all have the same length")
if min(time) < 0:
raise ValueError("endog must be non-negative")
if min(entry) < 0:
raise ValueError("entry time must be non-negative")
# In Stata, this is entry >= time, in R it is >.
if np.any(entry > time):
raise ValueError("entry times may not occur " +
"after event or censoring times")
class PHReg(model.LikelihoodModel):
"""
Cox Proportional Hazards Regression Model
The Cox PH Model is for right censored data.
Parameters
----------
endog : array_like
The observed times (event or censoring)
exog : 2D array_like
The covariates or exogeneous variables
status : array_like
The censoring status values; status=1 indicates that an
event occurred (e.g. failure or death), status=0 indicates
that the observation was right censored. If None, defaults
to status=1 for all cases.
entry : array_like
The entry times, if left truncation occurs
strata : array_like
Stratum labels. If None, all observations are taken to be
in a single stratum.
ties : str
The method used to handle tied times, must be either 'breslow'
or 'efron'.
offset : array_like
Array of offset values
missing : str
The method used to handle missing data
Notes
-----
Proportional hazards regression models should not include an
explicit or implicit intercept. The effect of an intercept is
not identified using the partial likelihood approach.
`endog`, `event`, `strata`, `entry`, and the first dimension
of `exog` all must have the same length
"""
def __init__(self, endog, exog, status=None, entry=None,
strata=None, offset=None, ties='breslow',
missing='drop', **kwargs):
# Default is no censoring
if status is None:
status = np.ones(len(endog))
super().__init__(endog, exog, status=status,
entry=entry, strata=strata,
offset=offset, missing=missing,
**kwargs)
# endog and exog are automatically converted, but these are
# not
if self.status is not None:
self.status = np.asarray(self.status)
if self.entry is not None:
self.entry = np.asarray(self.entry)
if self.strata is not None:
self.strata = np.asarray(self.strata)
if self.offset is not None:
self.offset = np.asarray(self.offset)
self.surv = PHSurvivalTime(self.endog, self.status,
self.exog, self.strata,
self.entry, self.offset)
self.nobs = len(self.endog)
self.groups = None
# TODO: not used?
self.missing = missing
self.df_resid = float(self.exog.shape[0] -
np.linalg.matrix_rank(self.exog))
self.df_model = float(np.linalg.matrix_rank(self.exog))
ties = ties.lower()
if ties not in ("efron", "breslow"):
raise ValueError("`ties` must be either `efron` or " +
"`breslow`")
self.ties = ties
@classmethod
def from_formula(cls, formula, data, status=None, entry=None,
strata=None, offset=None, subset=None,
ties='breslow', missing='drop', *args, **kwargs):
"""
Create a proportional hazards regression model from a formula
and dataframe.
Parameters
----------
formula : str or generic Formula object
The formula specifying the model
data : array_like
The data for the model. See Notes.
status : array_like
The censoring status values; status=1 indicates that an
event occurred (e.g. failure or death), status=0 indicates
that the observation was right censored. If None, defaults
to status=1 for all cases.
entry : array_like
The entry times, if left truncation occurs
strata : array_like
Stratum labels. If None, all observations are taken to be
in a single stratum.
offset : array_like
Array of offset values
subset : array_like
An array-like object of booleans, integers, or index
values that indicate the subset of df to use in the
model. Assumes df is a `pandas.DataFrame`
ties : str
The method used to handle tied times, must be either 'breslow'
or 'efron'.
missing : str
The method used to handle missing data
args : extra arguments
These are passed to the model
kwargs : extra keyword arguments
These are passed to the model with one exception. The
``eval_env`` keyword is passed to patsy. It can be either a
:class:`patsy:patsy.EvalEnvironment` object or an integer
indicating the depth of the namespace to use. For example, the
default ``eval_env=0`` uses the calling namespace. If you wish
to use a "clean" environment set ``eval_env=-1``.
Returns
-------
model : PHReg model instance
"""
# Allow array arguments to be passed by column name.
if isinstance(status, str):
status = data[status]
if isinstance(entry, str):
entry = data[entry]
if isinstance(strata, str):
strata = data[strata]
if isinstance(offset, str):
offset = data[offset]
import re
terms = re.split(r"[+\-~]", formula)
for term in terms:
term = term.strip()
if term in ("0", "1"):
import warnings
warnings.warn("PHReg formulas should not include any '0' or '1' terms")
mod = super().from_formula(formula, data,
status=status, entry=entry, strata=strata,
offset=offset, subset=subset, ties=ties,
missing=missing, drop_cols=["Intercept"], *args,
**kwargs)
return mod
def fit(self, groups=None, **args):
"""
Fit a proportional hazards regression model.
Parameters
----------
groups : array_like
Labels indicating groups of observations that may be
dependent. If present, the standard errors account for
this dependence. Does not affect fitted values.
Returns
-------
PHRegResults
Returns a results instance.
"""
# TODO process for missing values
if groups is not None:
if len(groups) != len(self.endog):
msg = ("len(groups) = %d and len(endog) = %d differ" %
(len(groups), len(self.endog)))
raise ValueError(msg)
self.groups = np.asarray(groups)
else:
self.groups = None
if 'disp' not in args:
args['disp'] = False
fit_rslts = super().fit(**args)
if self.groups is None:
cov_params = fit_rslts.cov_params()
else:
cov_params = self.robust_covariance(fit_rslts.params)
results = PHRegResults(self, fit_rslts.params, cov_params)
return results
def fit_regularized(self, method="elastic_net", alpha=0.,
start_params=None, refit=False, **kwargs):
r"""
Return a regularized fit to a linear regression model.
Parameters
----------
method : {'elastic_net'}
Only the `elastic_net` approach is currently implemented.
alpha : scalar or array_like
The penalty weight. If a scalar, the same penalty weight
applies to all variables in the model. If a vector, it
must have the same length as `params`, and contains a
penalty weight for each coefficient.
start_params : array_like
Starting values for `params`.
refit : bool
If True, the model is refit using only the variables that
have non-zero coefficients in the regularized fit. The
refitted model is not regularized.
**kwargs
Additional keyword arguments used to fit the model.
Returns
-------
PHRegResults
Returns a results instance.
Notes
-----
The penalty is the ``elastic net`` penalty, which is a
combination of L1 and L2 penalties.
The function that is minimized is:
.. math::
-loglike/n + alpha*((1-L1\_wt)*|params|_2^2/2 + L1\_wt*|params|_1)
where :math:`|*|_1` and :math:`|*|_2` are the L1 and L2 norms.
Post-estimation results are based on the same data used to
select variables, hence may be subject to overfitting biases.
The elastic_net method uses the following keyword arguments:
maxiter : int
Maximum number of iterations
L1_wt : float
Must be in [0, 1]. The L1 penalty has weight L1_wt and the
L2 penalty has weight 1 - L1_wt.
cnvrg_tol : float
Convergence threshold for line searches
zero_tol : float
Coefficients below this threshold are treated as zero.
"""
from statsmodels.base.elastic_net import fit_elasticnet
if method != "elastic_net":
raise ValueError("method for fit_regularized must be elastic_net")
defaults = {"maxiter" : 50, "L1_wt" : 1, "cnvrg_tol" : 1e-10,
"zero_tol" : 1e-10}
defaults.update(kwargs)
return fit_elasticnet(self, method=method,
alpha=alpha,
start_params=start_params,
refit=refit,
**defaults)
def loglike(self, params):
"""
Returns the log partial likelihood function evaluated at
`params`.
"""
if self.ties == "breslow":
return self.breslow_loglike(params)
elif self.ties == "efron":
return self.efron_loglike(params)
def score(self, params):
"""
Returns the score function evaluated at `params`.
"""
if self.ties == "breslow":
return self.breslow_gradient(params)
elif self.ties == "efron":
return self.efron_gradient(params)
def hessian(self, params):
"""
Returns the Hessian matrix of the log partial likelihood
function evaluated at `params`.
"""
if self.ties == "breslow":
return self.breslow_hessian(params)
else:
return self.efron_hessian(params)
def breslow_loglike(self, params):
"""
Returns the value of the log partial likelihood function
evaluated at `params`, using the Breslow method to handle tied
times.
"""
surv = self.surv
like = 0.
# Loop over strata
for stx in range(surv.nstrat):
uft_ix = surv.ufailt_ix[stx]
exog_s = surv.exog_s[stx]
nuft = len(uft_ix)
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0 = 0.
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
xp0 += e_linpred[ix].sum()
# Account for all cases that fail at this point.
ix = uft_ix[i]
like += (linpred[ix] - np.log(xp0)).sum()
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
xp0 -= e_linpred[ix].sum()
return like
def efron_loglike(self, params):
"""
Returns the value of the log partial likelihood function
evaluated at `params`, using the Efron method to handle tied
times.
"""
surv = self.surv
like = 0.
# Loop over strata
for stx in range(surv.nstrat):
# exog and linear predictor for this stratum
exog_s = surv.exog_s[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0 = 0.
# Iterate backward through the unique failure times.
uft_ix = surv.ufailt_ix[stx]
nuft = len(uft_ix)
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
xp0 += e_linpred[ix].sum()
xp0f = e_linpred[uft_ix[i]].sum()
# Account for all cases that fail at this point.
ix = uft_ix[i]
like += linpred[ix].sum()
m = len(ix)
J = np.arange(m, dtype=np.float64) / m
like -= np.log(xp0 - J*xp0f).sum()
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
xp0 -= e_linpred[ix].sum()
return like
def breslow_gradient(self, params):
"""
Returns the gradient of the log partial likelihood, using the
Breslow method to handle tied times.
"""
surv = self.surv
grad = 0.
# Loop over strata
for stx in range(surv.nstrat):
# Indices of subjects in the stratum
strat_ix = surv.stratum_rows[stx]
# Unique failure times in the stratum
uft_ix = surv.ufailt_ix[stx]
nuft = len(uft_ix)
# exog and linear predictor for the stratum
exog_s = surv.exog_s[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0, xp1 = 0., 0.
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
if len(ix) > 0:
v = exog_s[ix,:]
xp0 += e_linpred[ix].sum()
xp1 += (e_linpred[ix][:,None] * v).sum(0)
# Account for all cases that fail at this point.
ix = uft_ix[i]
grad += (exog_s[ix,:] - xp1 / xp0).sum(0)
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
if len(ix) > 0:
v = exog_s[ix,:]
xp0 -= e_linpred[ix].sum()
xp1 -= (e_linpred[ix][:,None] * v).sum(0)
return grad
def efron_gradient(self, params):
"""
Returns the gradient of the log partial likelihood evaluated
at `params`, using the Efron method to handle tied times.
"""
surv = self.surv
grad = 0.
# Loop over strata
for stx in range(surv.nstrat):
# Indices of cases in the stratum
strat_ix = surv.stratum_rows[stx]
# exog and linear predictor of the stratum
exog_s = surv.exog_s[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0, xp1 = 0., 0.
# Iterate backward through the unique failure times.
uft_ix = surv.ufailt_ix[stx]
nuft = len(uft_ix)
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
if len(ix) > 0:
v = exog_s[ix,:]
xp0 += e_linpred[ix].sum()
xp1 += (e_linpred[ix][:,None] * v).sum(0)
ixf = uft_ix[i]
if len(ixf) > 0:
v = exog_s[ixf,:]
xp0f = e_linpred[ixf].sum()
xp1f = (e_linpred[ixf][:,None] * v).sum(0)
# Consider all cases that fail at this point.
grad += v.sum(0)
m = len(ixf)
J = np.arange(m, dtype=np.float64) / m
numer = xp1 - np.outer(J, xp1f)
denom = xp0 - np.outer(J, xp0f)
ratio = numer / denom
rsum = ratio.sum(0)
grad -= rsum
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
if len(ix) > 0:
v = exog_s[ix,:]
xp0 -= e_linpred[ix].sum()
xp1 -= (e_linpred[ix][:,None] * v).sum(0)
return grad
def breslow_hessian(self, params):
"""
Returns the Hessian of the log partial likelihood evaluated at
`params`, using the Breslow method to handle tied times.
"""
surv = self.surv
hess = 0.
# Loop over strata
for stx in range(surv.nstrat):
uft_ix = surv.ufailt_ix[stx]
nuft = len(uft_ix)
exog_s = surv.exog_s[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0, xp1, xp2 = 0., 0., 0.
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
if len(ix) > 0:
xp0 += e_linpred[ix].sum()
v = exog_s[ix,:]
xp1 += (e_linpred[ix][:,None] * v).sum(0)
elx = e_linpred[ix]
xp2 += np.einsum("ij,ik,i->jk", v, v, elx)
# Account for all cases that fail at this point.
m = len(uft_ix[i])
hess += m*(xp2 / xp0 - np.outer(xp1, xp1) / xp0**2)
# Update for new cases entering the risk set.
ix = surv.risk_exit[stx][i]
if len(ix) > 0:
xp0 -= e_linpred[ix].sum()
v = exog_s[ix,:]
xp1 -= (e_linpred[ix][:,None] * v).sum(0)
elx = e_linpred[ix]
xp2 -= np.einsum("ij,ik,i->jk", v, v, elx)
return -hess
def efron_hessian(self, params):
"""
Returns the Hessian matrix of the partial log-likelihood
evaluated at `params`, using the Efron method to handle tied
times.
"""
surv = self.surv
hess = 0.
# Loop over strata
for stx in range(surv.nstrat):
exog_s = surv.exog_s[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
xp0, xp1, xp2 = 0., 0., 0.
# Iterate backward through the unique failure times.
uft_ix = surv.ufailt_ix[stx]
nuft = len(uft_ix)
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
if len(ix) > 0:
xp0 += e_linpred[ix].sum()
v = exog_s[ix,:]
xp1 += (e_linpred[ix][:,None] * v).sum(0)
elx = e_linpred[ix]
xp2 += np.einsum("ij,ik,i->jk", v, v, elx)
ixf = uft_ix[i]
if len(ixf) > 0:
v = exog_s[ixf,:]
xp0f = e_linpred[ixf].sum()
xp1f = (e_linpred[ixf][:,None] * v).sum(0)
elx = e_linpred[ixf]
xp2f = np.einsum("ij,ik,i->jk", v, v, elx)
# Account for all cases that fail at this point.
m = len(uft_ix[i])
J = np.arange(m, dtype=np.float64) / m
c0 = xp0 - J*xp0f
hess += xp2 * np.sum(1 / c0)
hess -= xp2f * np.sum(J / c0)
mat = (xp1[None, :] - np.outer(J, xp1f)) / c0[:, None]
hess -= np.einsum("ij,ik->jk", mat, mat)
# Update for new cases entering the risk set.
ix = surv.risk_exit[stx][i]
if len(ix) > 0:
xp0 -= e_linpred[ix].sum()
v = exog_s[ix,:]
xp1 -= (e_linpred[ix][:,None] * v).sum(0)
elx = e_linpred[ix]
xp2 -= np.einsum("ij,ik,i->jk", v, v, elx)
return -hess
def robust_covariance(self, params):
"""
Returns a covariance matrix for the proportional hazards model
regresion coefficient estimates that is robust to certain
forms of model misspecification.
Parameters
----------
params : ndarray
The parameter vector at which the covariance matrix is
calculated.
Returns
-------
The robust covariance matrix as a square ndarray.
Notes
-----
This function uses the `groups` argument to determine groups
within which observations may be dependent. The covariance
matrix is calculated using the Huber-White "sandwich" approach.
"""
if self.groups is None:
raise ValueError("`groups` must be specified to calculate the robust covariance matrix")
hess = self.hessian(params)
score_obs = self.score_residuals(params)
# Collapse
grads = {}
for i,g in enumerate(self.groups):
if g not in grads:
grads[g] = 0.
grads[g] += score_obs[i, :]
grads = np.asarray(list(grads.values()))
mat = grads[None, :, :]
mat = mat.T * mat
mat = mat.sum(1)
hess_inv = np.linalg.inv(hess)
cmat = np.dot(hess_inv, np.dot(mat, hess_inv))
return cmat
def score_residuals(self, params):
"""
Returns the score residuals calculated at a given vector of
parameters.
Parameters
----------
params : ndarray
The parameter vector at which the score residuals are
calculated.
Returns
-------
The score residuals, returned as a ndarray having the same
shape as `exog`.
Notes
-----
Observations in a stratum with no observed events have undefined
score residuals, and contain NaN in the returned matrix.
"""
surv = self.surv
score_resid = np.zeros(self.exog.shape, dtype=np.float64)
# Use to set undefined values to NaN.
mask = np.zeros(self.exog.shape[0], dtype=np.int32)
w_avg = self.weighted_covariate_averages(params)
# Loop over strata
for stx in range(surv.nstrat):
uft_ix = surv.ufailt_ix[stx]
exog_s = surv.exog_s[stx]
nuft = len(uft_ix)
strat_ix = surv.stratum_rows[stx]
xp0 = 0.
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
at_risk_ix = set()
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
at_risk_ix |= set(ix)
xp0 += e_linpred[ix].sum()
atr_ix = list(at_risk_ix)
leverage = exog_s[atr_ix, :] - w_avg[stx][i, :]
# Event indicators
d = np.zeros(exog_s.shape[0])
d[uft_ix[i]] = 1
# The increment in the cumulative hazard
dchaz = len(uft_ix[i]) / xp0
# Piece of the martingale residual
mrp = d[atr_ix] - e_linpred[atr_ix] * dchaz
# Update the score residuals
ii = strat_ix[atr_ix]
score_resid[ii,:] += leverage * mrp[:, None]
mask[ii] = 1
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
at_risk_ix -= set(ix)
xp0 -= e_linpred[ix].sum()
jj = np.flatnonzero(mask == 0)
if len(jj) > 0:
score_resid[jj, :] = np.nan
return score_resid
def weighted_covariate_averages(self, params):
"""
Returns the hazard-weighted average of covariate values for
subjects who are at-risk at a particular time.
Parameters
----------
params : ndarray
Parameter vector
Returns
-------
averages : list of ndarrays
averages[stx][i,:] is a row vector containing the weighted
average values (for all the covariates) of at-risk
subjects a the i^th largest observed failure time in
stratum `stx`, using the hazard multipliers as weights.
Notes
-----
Used to calculate leverages and score residuals.
"""
surv = self.surv
averages = []
xp0, xp1 = 0., 0.
# Loop over strata
for stx in range(surv.nstrat):
uft_ix = surv.ufailt_ix[stx]
exog_s = surv.exog_s[stx]
nuft = len(uft_ix)
average_s = np.zeros((len(uft_ix), exog_s.shape[1]),
dtype=np.float64)
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
linpred -= linpred.max()
e_linpred = np.exp(linpred)
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
xp0 += e_linpred[ix].sum()
xp1 += np.dot(e_linpred[ix], exog_s[ix, :])
average_s[i, :] = xp1 / xp0
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
xp0 -= e_linpred[ix].sum()
xp1 -= np.dot(e_linpred[ix], exog_s[ix, :])
averages.append(average_s)
return averages
def baseline_cumulative_hazard(self, params):
"""
Estimate the baseline cumulative hazard and survival
functions.
Parameters
----------
params : ndarray
The model parameters.
Returns
-------
A list of triples (time, hazard, survival) containing the time
values and corresponding cumulative hazard and survival
function values for each stratum.
Notes
-----
Uses the Nelson-Aalen estimator.
"""
# TODO: some disagreements with R, not the same algorithm but
# hard to deduce what R is doing. Our results are reasonable.
surv = self.surv
rslt = []
# Loop over strata
for stx in range(surv.nstrat):
uft = surv.ufailt[stx]
uft_ix = surv.ufailt_ix[stx]
exog_s = surv.exog_s[stx]
nuft = len(uft_ix)
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
e_linpred = np.exp(linpred)
xp0 = 0.
h0 = np.zeros(nuft, dtype=np.float64)
# Iterate backward through the unique failure times.
for i in range(nuft)[::-1]:
# Update for new cases entering the risk set.
ix = surv.risk_enter[stx][i]
xp0 += e_linpred[ix].sum()
# Account for all cases that fail at this point.
ix = uft_ix[i]
h0[i] = len(ix) / xp0
# Update for cases leaving the risk set.
ix = surv.risk_exit[stx][i]
xp0 -= e_linpred[ix].sum()
cumhaz = np.cumsum(h0) - h0
current_strata_surv = np.exp(-cumhaz)
rslt.append([uft, cumhaz, current_strata_surv])
return rslt
def baseline_cumulative_hazard_function(self, params):
"""
Returns a function that calculates the baseline cumulative
hazard function for each stratum.
Parameters
----------
params : ndarray
The model parameters.
Returns
-------
A dict mapping stratum names to the estimated baseline
cumulative hazard function.
"""
from scipy.interpolate import interp1d
surv = self.surv
base = self.baseline_cumulative_hazard(params)
cumhaz_f = {}
for stx in range(surv.nstrat):
time_h = base[stx][0]
cumhaz = base[stx][1]
time_h = np.r_[-np.inf, time_h, np.inf]
cumhaz = np.r_[cumhaz[0], cumhaz, cumhaz[-1]]
func = interp1d(time_h, cumhaz, kind='zero')
cumhaz_f[self.surv.stratum_names[stx]] = func
return cumhaz_f
@Appender(_predict_docstring % {
'params_doc': _predict_params_doc,
'cov_params_doc': _predict_cov_params_docstring})
def predict(self, params, exog=None, cov_params=None, endog=None,
strata=None, offset=None, pred_type="lhr", pred_only=False):
# This function breaks mediation, because it does not simply
# return the predicted values as an array.
pred_type = pred_type.lower()
if pred_type not in ["lhr", "hr", "surv", "cumhaz"]:
msg = "Type %s not allowed for prediction" % pred_type
raise ValueError(msg)
class bunch:
predicted_values = None
standard_errors = None
ret_val = bunch()
# Do not do anything with offset here because we want to allow
# different offsets to be specified even if exog is the model
# exog.
exog_provided = True
if exog is None:
exog = self.exog
exog_provided = False
lhr = np.dot(exog, params)
if offset is not None:
lhr += offset
# Never use self.offset unless we are also using self.exog
elif self.offset is not None and not exog_provided:
lhr += self.offset
# Handle lhr and hr prediction first, since they do not make
# use of the hazard function.
if pred_type == "lhr":
ret_val.predicted_values = lhr
if cov_params is not None:
mat = np.dot(exog, cov_params)
va = (mat * exog).sum(1)
ret_val.standard_errors = np.sqrt(va)
if pred_only:
return ret_val.predicted_values
return ret_val
hr = np.exp(lhr)
if pred_type == "hr":
ret_val.predicted_values = hr
if pred_only:
return ret_val.predicted_values
return ret_val
# Makes sure endog is defined
if endog is None and exog_provided:
msg = "If `exog` is provided `endog` must be provided."
raise ValueError(msg)
# Use model endog if using model exog
elif endog is None and not exog_provided:
endog = self.endog
# Make sure strata is defined
if strata is None:
if exog_provided and self.surv.nstrat > 1:
raise ValueError("`strata` must be provided")
if self.strata is None:
strata = [self.surv.stratum_names[0],] * len(endog)
else:
strata = self.strata
cumhaz = np.nan * np.ones(len(endog), dtype=np.float64)
stv = np.unique(strata)
bhaz = self.baseline_cumulative_hazard_function(params)
for stx in stv:
ix = np.flatnonzero(strata == stx)
func = bhaz[stx]
cumhaz[ix] = func(endog[ix]) * hr[ix]
if pred_type == "cumhaz":
ret_val.predicted_values = cumhaz
elif pred_type == "surv":
ret_val.predicted_values = np.exp(-cumhaz)
if pred_only:
return ret_val.predicted_values
return ret_val
def get_distribution(self, params, scale=1.0, exog=None):
"""
Returns a scipy distribution object corresponding to the
distribution of uncensored endog (duration) values for each
case.
Parameters
----------
params : array_like
The proportional hazards model parameters.
scale : float
Present for compatibility, not used.
exog : array_like
A design matrix, defaults to model.exog.
Returns
-------
A list of objects of type scipy.stats.distributions.rv_discrete
Notes
-----
The distributions are obtained from a simple discrete estimate
of the survivor function that puts all mass on the observed
failure times within a stratum.
"""
surv = self.surv
bhaz = self.baseline_cumulative_hazard(params)
# The arguments to rv_discrete_float, first obtained by
# stratum
pk, xk = [], []
if exog is None:
exog_split = surv.exog_s
else:
exog_split = self.surv._split(exog)
for stx in range(self.surv.nstrat):
exog_s = exog_split[stx]
linpred = np.dot(exog_s, params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
e_linpred = np.exp(linpred)
# The unique failure times for this stratum (the support
# of the distribution).
pts = bhaz[stx][0]
# The individual cumulative hazards for everyone in this
# stratum.
ichaz = np.outer(e_linpred, bhaz[stx][1])
# The individual survival functions.
usurv = np.exp(-ichaz)
z = np.zeros((usurv.shape[0], 1))
usurv = np.concatenate((usurv, z), axis=1)
# The individual survival probability masses.
probs = -np.diff(usurv, 1)
pk.append(probs)
xk.append(np.outer(np.ones(probs.shape[0]), pts))
# Pad to make all strata have the same shape
mxc = max([x.shape[1] for x in xk])
for k in range(self.surv.nstrat):
if xk[k].shape[1] < mxc:
xk1 = np.zeros((xk[k].shape[0], mxc))
pk1 = np.zeros((pk[k].shape[0], mxc))
xk1[:, 0:xk[k].shape[1]] = xk[k]
pk1[:, 0:pk[k].shape[1]] = pk[k]
xk[k], pk[k] = xk1, pk1
# Put the support points and probabilities into single matrices
xka = np.nan * np.ones((len(self.endog), mxc))
pka = np.ones((len(self.endog), mxc), dtype=np.float64) / mxc
for stx in range(self.surv.nstrat):
ix = self.surv.stratum_rows[stx]
xka[ix, :] = xk[stx]
pka[ix, :] = pk[stx]
dist = rv_discrete_float(xka, pka)
return dist
class PHRegResults(base.LikelihoodModelResults):
'''
Class to contain results of fitting a Cox proportional hazards
survival model.
PHregResults inherits from statsmodels.LikelihoodModelResults
Parameters
----------
See statsmodels.LikelihoodModelResults
Attributes
----------
model : class instance
PHreg model instance that called fit.
normalized_cov_params : ndarray
The sampling covariance matrix of the estimates
params : ndarray
The coefficients of the fitted model. Each coefficient is the
log hazard ratio corresponding to a 1 unit difference in a
single covariate while holding the other covariates fixed.
bse : ndarray
The standard errors of the fitted parameters.
See Also
--------
statsmodels.LikelihoodModelResults
'''
def __init__(self, model, params, cov_params, scale=1., covariance_type="naive"):
# There is no scale parameter, but we need it for
# meta-procedures that work with results.
self.covariance_type = covariance_type
self.df_resid = model.df_resid
self.df_model = model.df_model
super().__init__(model, params, scale=1.,
normalized_cov_params=cov_params)
@cache_readonly
def standard_errors(self):
"""
Returns the standard errors of the parameter estimates.
"""
return np.sqrt(np.diag(self.cov_params()))
@cache_readonly
def bse(self):
"""
Returns the standard errors of the parameter estimates.
"""
return self.standard_errors
def get_distribution(self):
"""
Returns a scipy distribution object corresponding to the
distribution of uncensored endog (duration) values for each
case.
Returns
-------
A list of objects of type scipy.stats.distributions.rv_discrete
Notes
-----
The distributions are obtained from a simple discrete estimate
of the survivor function that puts all mass on the observed
failure times within a stratum.
"""
return self.model.get_distribution(self.params)
@Appender(_predict_docstring % {'params_doc': '', 'cov_params_doc': ''})
def predict(self, endog=None, exog=None, strata=None,
offset=None, transform=True, pred_type="lhr"):
return super().predict(exog=exog,
transform=transform,
cov_params=self.cov_params(),
endog=endog,
strata=strata,
offset=offset,
pred_type=pred_type)
def _group_stats(self, groups):
"""
Descriptive statistics of the groups.
"""
gsizes = np.unique(groups, return_counts=True)
gsizes = gsizes[1]
return gsizes.min(), gsizes.max(), gsizes.mean(), len(gsizes)
@cache_readonly
def weighted_covariate_averages(self):
"""
The average covariate values within the at-risk set at each
event time point, weighted by hazard.
"""
return self.model.weighted_covariate_averages(self.params)
@cache_readonly
def score_residuals(self):
"""
A matrix containing the score residuals.
"""
return self.model.score_residuals(self.params)
@cache_readonly
def baseline_cumulative_hazard(self):
"""
A list (corresponding to the strata) containing the baseline
cumulative hazard function evaluated at the event points.
"""
return self.model.baseline_cumulative_hazard(self.params)
@cache_readonly
def baseline_cumulative_hazard_function(self):
"""
A list (corresponding to the strata) containing function
objects that calculate the cumulative hazard function.
"""
return self.model.baseline_cumulative_hazard_function(self.params)
@cache_readonly
def schoenfeld_residuals(self):
"""
A matrix containing the Schoenfeld residuals.
Notes
-----
Schoenfeld residuals for censored observations are set to zero.
"""
surv = self.model.surv
w_avg = self.weighted_covariate_averages
# Initialize at NaN since rows that belong to strata with no
# events have undefined residuals.
sch_resid = np.nan*np.ones(self.model.exog.shape, dtype=np.float64)
# Loop over strata
for stx in range(surv.nstrat):
uft = surv.ufailt[stx]
exog_s = surv.exog_s[stx]
time_s = surv.time_s[stx]
strat_ix = surv.stratum_rows[stx]
ii = np.searchsorted(uft, time_s)
# These subjects are censored after the last event in
# their stratum, so have empty risk sets and undefined
# residuals.
jj = np.flatnonzero(ii < len(uft))
sch_resid[strat_ix[jj], :] = exog_s[jj, :] - w_avg[stx][ii[jj], :]
jj = np.flatnonzero(self.model.status == 0)
sch_resid[jj, :] = np.nan
return sch_resid
@cache_readonly
def martingale_residuals(self):
"""
The martingale residuals.
"""
surv = self.model.surv
# Initialize at NaN since rows that belong to strata with no
# events have undefined residuals.
mart_resid = np.nan*np.ones(len(self.model.endog), dtype=np.float64)
cumhaz_f_list = self.baseline_cumulative_hazard_function
# Loop over strata
for stx in range(surv.nstrat):
cumhaz_f = cumhaz_f_list[stx]
exog_s = surv.exog_s[stx]
time_s = surv.time_s[stx]
linpred = np.dot(exog_s, self.params)
if surv.offset_s is not None:
linpred += surv.offset_s[stx]
e_linpred = np.exp(linpred)
ii = surv.stratum_rows[stx]
chaz = cumhaz_f(time_s)
mart_resid[ii] = self.model.status[ii] - e_linpred * chaz
return mart_resid
def summary(self, yname=None, xname=None, title=None, alpha=.05):
"""
Summarize the proportional hazards regression results.
Parameters
----------
yname : str, optional
Default is `y`
xname : list[str], optional
Names for the exogenous variables, default is `x#` for ## in p the
number of regressors. Must match the number of parameters in
the model
title : str, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be
printed or converted to various output formats.
See Also
--------
statsmodels.iolib.summary2.Summary : class to hold summary results
"""
from statsmodels.iolib import summary2
smry = summary2.Summary()
float_format = "%8.3f"
info = {}
info["Model:"] = "PH Reg"
if yname is None:
yname = self.model.endog_names
info["Dependent variable:"] = yname
info["Ties:"] = self.model.ties.capitalize()
info["Sample size:"] = str(self.model.surv.n_obs)
info["Num. events:"] = str(int(sum(self.model.status)))
if self.model.groups is not None:
mn, mx, avg, num = self._group_stats(self.model.groups)
info["Num groups:"] = "%.0f" % num
info["Min group size:"] = "%.0f" % mn
info["Max group size:"] = "%.0f" % mx
info["Avg group size:"] = "%.1f" % avg
if self.model.strata is not None:
mn, mx, avg, num = self._group_stats(self.model.strata)
info["Num strata:"] = "%.0f" % num
info["Min stratum size:"] = "%.0f" % mn
info["Max stratum size:"] = "%.0f" % mx
info["Avg stratum size:"] = "%.1f" % avg
smry.add_dict(info, align='l', float_format=float_format)
param = summary2.summary_params(self, alpha=alpha)
param = param.rename(columns={"Coef.": "log HR",
"Std.Err.": "log HR SE"})
param.insert(2, "HR", np.exp(param["log HR"]))
a = "[%.3f" % (alpha / 2)
param.loc[:, a] = np.exp(param.loc[:, a])
a = "%.3f]" % (1 - alpha / 2)
param.loc[:, a] = np.exp(param.loc[:, a])
if xname is not None:
param.index = xname
smry.add_df(param, float_format=float_format)
smry.add_title(title=title, results=self)
smry.add_text("Confidence intervals are for the hazard ratios")
dstrat = self.model.surv.nstrat_orig - self.model.surv.nstrat
if dstrat > 0:
if dstrat == 1:
smry.add_text("1 stratum dropped for having no events")
else:
smry.add_text("%d strata dropped for having no events" % dstrat)
if self.model.entry is not None:
n_entry = sum(self.model.entry != 0)
if n_entry == 1:
smry.add_text("1 observation has a positive entry time")
else:
smry.add_text("%d observations have positive entry times" % n_entry)
if self.model.groups is not None:
smry.add_text("Standard errors account for dependence within groups")
if hasattr(self, "regularized"):
smry.add_text("Standard errors do not account for the regularization")
return smry
class rv_discrete_float:
"""
A class representing a collection of discrete distributions.
Parameters
----------
xk : 2d array_like
The support points, should be non-decreasing within each
row.
pk : 2d array_like
The probabilities, should sum to one within each row.
Notes
-----
Each row of `xk`, and the corresponding row of `pk` describe a
discrete distribution.
`xk` and `pk` should both be two-dimensional ndarrays. Each row
of `pk` should sum to 1.
This class is used as a substitute for scipy.distributions.
rv_discrete, since that class does not allow non-integer support
points, or vectorized operations.
Only a limited number of methods are implemented here compared to
the other scipy distribution classes.
"""
def __init__(self, xk, pk):
self.xk = xk
self.pk = pk
self.cpk = np.cumsum(self.pk, axis=1)
def rvs(self, n=None):
"""
Returns a random sample from the discrete distribution.
A vector is returned containing a single draw from each row of
`xk`, using the probabilities of the corresponding row of `pk`
Parameters
----------
n : not used
Present for signature compatibility
"""
n = self.xk.shape[0]
u = np.random.uniform(size=n)
ix = (self.cpk < u[:, None]).sum(1)
ii = np.arange(n, dtype=np.int32)
return self.xk[(ii,ix)]
def mean(self):
"""
Returns a vector containing the mean values of the discrete
distributions.
A vector is returned containing the mean value of each row of
`xk`, using the probabilities in the corresponding row of
`pk`.
"""
return (self.xk * self.pk).sum(1)
def var(self):
"""
Returns a vector containing the variances of the discrete
distributions.
A vector is returned containing the variance for each row of
`xk`, using the probabilities in the corresponding row of
`pk`.
"""
mn = self.mean()
xkc = self.xk - mn[:, None]
return (self.pk * (self.xk - xkc)**2).sum(1)
def std(self):
"""
Returns a vector containing the standard deviations of the
discrete distributions.
A vector is returned containing the standard deviation for
each row of `xk`, using the probabilities in the corresponding
row of `pk`.
"""
return np.sqrt(self.var())