189 lines
4.1 KiB
Python
189 lines
4.1 KiB
Python
from typing import Optional
|
|
|
|
import numpy as np
|
|
from packaging.version import Version, parse
|
|
import pandas as pd
|
|
from pandas.util._decorators import (
|
|
Appender,
|
|
Substitution,
|
|
cache_readonly,
|
|
deprecate_kwarg,
|
|
)
|
|
|
|
__all__ = [
|
|
"assert_frame_equal",
|
|
"assert_index_equal",
|
|
"assert_series_equal",
|
|
"data_klasses",
|
|
"frequencies",
|
|
"is_numeric_dtype",
|
|
"testing",
|
|
"cache_readonly",
|
|
"deprecate_kwarg",
|
|
"Appender",
|
|
"Substitution",
|
|
"is_int_index",
|
|
"is_float_index",
|
|
"make_dataframe",
|
|
"to_numpy",
|
|
"PD_LT_1_0_0",
|
|
"get_cached_func",
|
|
"get_cached_doc",
|
|
"call_cached_func",
|
|
"PD_LT_1_4",
|
|
"PD_LT_2",
|
|
"MONTH_END",
|
|
"QUARTER_END",
|
|
"YEAR_END",
|
|
"FUTURE_STACK",
|
|
]
|
|
|
|
version = parse(pd.__version__)
|
|
|
|
PD_LT_2_2_0 = version < Version("2.1.99")
|
|
PD_LT_2_1_0 = version < Version("2.0.99")
|
|
PD_LT_1_0_0 = version < Version("0.99.0")
|
|
PD_LT_1_4 = version < Version("1.3.99")
|
|
PD_LT_2 = version < Version("1.9.99")
|
|
|
|
try:
|
|
from pandas.api.types import is_numeric_dtype
|
|
except ImportError:
|
|
from pandas.core.common import is_numeric_dtype
|
|
|
|
try:
|
|
from pandas.tseries import offsets as frequencies
|
|
except ImportError:
|
|
from pandas.tseries import frequencies
|
|
|
|
data_klasses = (pd.Series, pd.DataFrame)
|
|
|
|
try:
|
|
import pandas.testing as testing
|
|
except ImportError:
|
|
import pandas.util.testing as testing
|
|
|
|
assert_frame_equal = testing.assert_frame_equal
|
|
assert_index_equal = testing.assert_index_equal
|
|
assert_series_equal = testing.assert_series_equal
|
|
|
|
|
|
def is_int_index(index: pd.Index) -> bool:
|
|
"""
|
|
Check if an index is integral
|
|
|
|
Parameters
|
|
----------
|
|
index : pd.Index
|
|
Any numeric index
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if is an index with a standard integral type
|
|
"""
|
|
return (
|
|
isinstance(index, pd.Index)
|
|
and isinstance(index.dtype, np.dtype)
|
|
and np.issubdtype(index.dtype, np.integer)
|
|
)
|
|
|
|
|
|
def is_float_index(index: pd.Index) -> bool:
|
|
"""
|
|
Check if an index is floating
|
|
|
|
Parameters
|
|
----------
|
|
index : pd.Index
|
|
Any numeric index
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if an index with a standard numpy floating dtype
|
|
"""
|
|
return (
|
|
isinstance(index, pd.Index)
|
|
and isinstance(index.dtype, np.dtype)
|
|
and np.issubdtype(index.dtype, np.floating)
|
|
)
|
|
|
|
|
|
try:
|
|
from pandas._testing import makeDataFrame as make_dataframe
|
|
except ImportError:
|
|
import string
|
|
|
|
def rands_array(nchars, size, dtype="O"):
|
|
"""
|
|
Generate an array of byte strings.
|
|
"""
|
|
rands_chars = np.array(
|
|
list(string.ascii_letters + string.digits), dtype=(np.str_, 1)
|
|
)
|
|
retval = (
|
|
np.random.choice(rands_chars, size=nchars * np.prod(size))
|
|
.view((np.str_, nchars))
|
|
.reshape(size)
|
|
)
|
|
if dtype is None:
|
|
return retval
|
|
else:
|
|
return retval.astype(dtype)
|
|
|
|
def make_dataframe():
|
|
"""
|
|
Simple verion of pandas._testing.makeDataFrame
|
|
"""
|
|
n = 30
|
|
k = 4
|
|
index = pd.Index(rands_array(nchars=10, size=n), name=None)
|
|
data = {
|
|
c: pd.Series(np.random.randn(n), index=index)
|
|
for c in string.ascii_uppercase[:k]
|
|
}
|
|
|
|
return pd.DataFrame(data)
|
|
|
|
|
|
def to_numpy(po: pd.DataFrame) -> np.ndarray:
|
|
"""
|
|
Workaround legacy pandas lacking to_numpy
|
|
|
|
Parameters
|
|
----------
|
|
po : Pandas obkect
|
|
|
|
Returns
|
|
-------
|
|
ndarray
|
|
A numpy array
|
|
"""
|
|
try:
|
|
return po.to_numpy()
|
|
except AttributeError:
|
|
return po.values
|
|
|
|
|
|
def get_cached_func(cached_prop):
|
|
try:
|
|
return cached_prop.fget
|
|
except AttributeError:
|
|
return cached_prop.func
|
|
|
|
|
|
def call_cached_func(cached_prop, *args, **kwargs):
|
|
f = get_cached_func(cached_prop)
|
|
return f(*args, **kwargs)
|
|
|
|
|
|
def get_cached_doc(cached_prop) -> Optional[str]:
|
|
return get_cached_func(cached_prop).__doc__
|
|
|
|
|
|
MONTH_END = "M" if PD_LT_2_2_0 else "ME"
|
|
QUARTER_END = "Q" if PD_LT_2_2_0 else "QE"
|
|
YEAR_END = "Y" if PD_LT_2_2_0 else "YE"
|
|
FUTURE_STACK = {} if PD_LT_2_1_0 else {"future_stack": True}
|