2024-10-02 22:15:59 +04:00

154 lines
5.2 KiB
Python

"""
Tests for Results.predict
"""
from statsmodels.compat.pandas import testing as pdt
import numpy as np
import pandas as pd
from numpy.testing import assert_allclose, assert_equal
from statsmodels.regression.linear_model import OLS
from statsmodels.genmod.generalized_linear_model import GLM
class CheckPredictReturns:
def test_2d(self):
res = self.res
data = self.data
fitted = res.fittedvalues.iloc[1:10:2]
pred = res.predict(data.iloc[1:10:2])
pdt.assert_index_equal(pred.index, fitted.index)
assert_allclose(pred.values, fitted.values, rtol=1e-13)
# plain dict
xd = dict(zip(data.columns, data.iloc[1:10:2].values.T))
pred = res.predict(xd)
assert_equal(pred.index, np.arange(len(pred)))
assert_allclose(pred.values, fitted.values, rtol=1e-13)
def test_1d(self):
# one observation
res = self.res
data = self.data
pred = res.predict(data.iloc[:1])
pdt.assert_index_equal(pred.index, data.iloc[:1].index)
fv = np.asarray(res.fittedvalues)
assert_allclose(pred.values, fv[0], rtol=1e-13)
fittedm = res.fittedvalues.mean()
xmean = data.mean()
pred = res.predict(xmean.to_frame().T)
assert_equal(pred.index, np.arange(1))
assert_allclose(pred, fittedm, rtol=1e-13)
# Series
pred = res.predict(data.mean())
assert_equal(pred.index, np.arange(1))
assert_allclose(pred.values, fittedm, rtol=1e-13)
# dict with scalar value (is plain dict)
# Note: this warns about dropped nan, even though there are None -FIXED
pred = res.predict(data.mean().to_dict())
assert_equal(pred.index, np.arange(1))
assert_allclose(pred.values, fittedm, rtol=1e-13)
def test_nopatsy(self):
res = self.res
data = self.data
fitted = res.fittedvalues.iloc[1:10:2]
# plain numpy array
pred = res.predict(res.model.exog[1:10:2], transform=False)
assert_allclose(pred, fitted.values, rtol=1e-13)
# pandas DataFrame
x = pd.DataFrame(res.model.exog[1:10:2],
index = data.index[1:10:2],
columns=res.model.exog_names)
pred = res.predict(x)
pdt.assert_index_equal(pred.index, fitted.index)
assert_allclose(pred.values, fitted.values, rtol=1e-13)
# one observation - 1-D
pred = res.predict(res.model.exog[1], transform=False)
assert_allclose(pred, fitted.values[0], rtol=1e-13)
# one observation - pd.Series
pred = res.predict(x.iloc[0])
pdt.assert_index_equal(pred.index, fitted.index[:1])
assert_allclose(pred.values[0], fitted.values[0], rtol=1e-13)
class TestPredictOLS(CheckPredictReturns):
@classmethod
def setup_class(cls):
nobs = 30
np.random.seed(987128)
x = np.random.randn(nobs, 3)
y = x.sum(1) + np.random.randn(nobs)
index = ['obs%02d' % i for i in range(nobs)]
# add one extra column to check that it does not matter
cls.data = pd.DataFrame(np.round(np.column_stack((y, x)), 4),
columns='y var1 var2 var3'.split(),
index=index)
cls.res = OLS.from_formula('y ~ var1 + var2', data=cls.data).fit()
class TestPredictGLM(CheckPredictReturns):
@classmethod
def setup_class(cls):
nobs = 30
np.random.seed(987128)
x = np.random.randn(nobs, 3)
y = x.sum(1) + np.random.randn(nobs)
index = ['obs%02d' % i for i in range(nobs)]
# add one extra column to check that it does not matter
cls.data = pd.DataFrame(np.round(np.column_stack((y, x)), 4),
columns='y var1 var2 var3'.split(),
index=index)
cls.res = GLM.from_formula('y ~ var1 + var2', data=cls.data).fit()
def test_predict_offset(self):
res = self.res
data = self.data
fitted = res.fittedvalues.iloc[1:10:2]
offset = np.arange(len(fitted))
fitted = fitted + offset
pred = res.predict(data.iloc[1:10:2], offset=offset)
pdt.assert_index_equal(pred.index, fitted.index)
assert_allclose(pred.values, fitted.values, rtol=1e-13)
# plain dict
xd = dict(zip(data.columns, data.iloc[1:10:2].values.T))
pred = res.predict(xd, offset=offset)
assert_equal(pred.index, np.arange(len(pred)))
assert_allclose(pred.values, fitted.values, rtol=1e-13)
# offset as pandas.Series
data2 = data.iloc[1:10:2].copy()
data2['offset'] = offset
pred = res.predict(data2, offset=data2['offset'])
pdt.assert_index_equal(pred.index, fitted.index)
assert_allclose(pred.values, fitted.values, rtol=1e-13)
# check nan in exog is ok, preserves index matching offset length
data2 = data.iloc[1:10:2].copy()
data2['offset'] = offset
data2.iloc[0, 1] = np.nan
pred = res.predict(data2, offset=data2['offset'])
pdt.assert_index_equal(pred.index, fitted.index)
fitted_nan = fitted.copy()
fitted_nan.iloc[0] = np.nan
assert_allclose(pred.values, fitted_nan.values, rtol=1e-13)