AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/base/data.py
2024-10-02 22:15:59 +04:00

677 lines
24 KiB
Python

"""
Base tools for handling various kinds of data structures, attaching metadata to
results, and doing data cleaning
"""
from __future__ import annotations
from statsmodels.compat.python import lmap
from functools import reduce
import numpy as np
from pandas import DataFrame, Series, isnull, MultiIndex
import statsmodels.tools.data as data_util
from statsmodels.tools.decorators import cache_readonly, cache_writable
from statsmodels.tools.sm_exceptions import MissingDataError
def _asarray_2dcolumns(x):
if np.asarray(x).ndim > 1 and np.asarray(x).squeeze().ndim == 1:
return
def _asarray_2d_null_rows(x):
"""
Makes sure input is an array and is 2d. Makes sure output is 2d. True
indicates a null in the rows of 2d x.
"""
#Have to have the asarrays because isnull does not account for array_like
#input
x = np.asarray(x)
if x.ndim == 1:
x = x[:, None]
return np.any(isnull(x), axis=1)[:, None]
def _nan_rows(*arrs):
"""
Returns a boolean array which is True where any of the rows in any
of the _2d_ arrays in arrs are NaNs. Inputs can be any mixture of Series,
DataFrames or array_like.
"""
if len(arrs) == 1:
arrs += ([[False]],)
def _nan_row_maybe_two_inputs(x, y):
# check for dtype bc dataframe has dtypes
x_is_boolean_array = hasattr(x, 'dtype') and x.dtype == bool and x
return np.logical_or(_asarray_2d_null_rows(x),
(x_is_boolean_array | _asarray_2d_null_rows(y)))
return reduce(_nan_row_maybe_two_inputs, arrs).squeeze()
class ModelData:
"""
Class responsible for handling input data and extracting metadata into the
appropriate form
"""
_param_names = None
_cov_names = None
def __init__(self, endog, exog=None, missing='none', hasconst=None,
**kwargs):
if data_util._is_recarray(endog) or data_util._is_recarray(exog):
from statsmodels.tools.sm_exceptions import recarray_exception
raise NotImplementedError(recarray_exception)
if 'design_info' in kwargs:
self.design_info = kwargs.pop('design_info')
if 'formula' in kwargs:
self.formula = kwargs.pop('formula')
if missing != 'none':
arrays, nan_idx = self.handle_missing(endog, exog, missing,
**kwargs)
self.missing_row_idx = nan_idx
self.__dict__.update(arrays) # attach all the data arrays
self.orig_endog = self.endog
self.orig_exog = self.exog
self.endog, self.exog = self._convert_endog_exog(self.endog,
self.exog)
else:
self.__dict__.update(kwargs) # attach the extra arrays anyway
self.orig_endog = endog
self.orig_exog = exog
self.endog, self.exog = self._convert_endog_exog(endog, exog)
self.const_idx = None
self.k_constant = 0
self._handle_constant(hasconst)
self._check_integrity()
self._cache = {}
def __getstate__(self):
from copy import copy
d = copy(self.__dict__)
if "design_info" in d:
del d["design_info"]
d["restore_design_info"] = True
return d
def __setstate__(self, d):
if "restore_design_info" in d:
# NOTE: there may be a more performant way to do this
from patsy import dmatrices, PatsyError
exc = []
try:
data = d['frame']
except KeyError:
data = d['orig_endog'].join(d['orig_exog'])
for depth in [2, 3, 1, 0, 4]: # sequence is a guess where to likely find it
try:
_, design = dmatrices(d['formula'], data, eval_env=depth,
return_type='dataframe')
break
except (NameError, PatsyError) as e:
exc.append(e) # why do I need a reference from outside except block
pass
else:
raise exc[-1]
self.design_info = design.design_info
del d["restore_design_info"]
self.__dict__.update(d)
def _handle_constant(self, hasconst):
if hasconst is False or self.exog is None:
self.k_constant = 0
self.const_idx = None
else:
# detect where the constant is
check_implicit = False
exog_max = np.max(self.exog, axis=0)
if not np.isfinite(exog_max).all():
raise MissingDataError('exog contains inf or nans')
exog_min = np.min(self.exog, axis=0)
const_idx = np.where(exog_max == exog_min)[0].squeeze()
self.k_constant = const_idx.size
if self.k_constant == 1:
if self.exog[:, const_idx].mean() != 0:
self.const_idx = int(const_idx)
else:
# we only have a zero column and no other constant
check_implicit = True
elif self.k_constant > 1:
# we have more than one constant column
# look for ones
values = [] # keep values if we need != 0
for idx in const_idx:
value = self.exog[:, idx].mean()
if value == 1:
self.k_constant = 1
self.const_idx = int(idx)
break
values.append(value)
else:
# we did not break, no column of ones
pos = (np.array(values) != 0)
if pos.any():
# take the first nonzero column
self.k_constant = 1
self.const_idx = int(const_idx[pos.argmax()])
else:
# only zero columns
check_implicit = True
elif self.k_constant == 0:
check_implicit = True
else:
# should not be here
pass
if check_implicit and not hasconst:
# look for implicit constant
# Compute rank of augmented matrix
augmented_exog = np.column_stack(
(np.ones(self.exog.shape[0]), self.exog))
rank_augm = np.linalg.matrix_rank(augmented_exog)
rank_orig = np.linalg.matrix_rank(self.exog)
self.k_constant = int(rank_orig == rank_augm)
self.const_idx = None
elif hasconst:
# Ensure k_constant is 1 any time hasconst is True
# even if one is not found
self.k_constant = 1
@classmethod
def _drop_nans(cls, x, nan_mask):
return x[nan_mask]
@classmethod
def _drop_nans_2d(cls, x, nan_mask):
return x[nan_mask][:, nan_mask]
@classmethod
def handle_missing(cls, endog, exog, missing, **kwargs):
"""
This returns a dictionary with keys endog, exog and the keys of
kwargs. It preserves Nones.
"""
none_array_names = []
# patsy's already dropped NaNs in y/X
missing_idx = kwargs.pop('missing_idx', None)
if missing_idx is not None:
# y, X already handled by patsy. add back in later.
combined = ()
combined_names = []
if exog is None:
none_array_names += ['exog']
elif exog is not None:
combined = (endog, exog)
combined_names = ['endog', 'exog']
else:
combined = (endog,)
combined_names = ['endog']
none_array_names += ['exog']
# deal with other arrays
combined_2d = ()
combined_2d_names = []
if len(kwargs):
for key, value_array in kwargs.items():
if value_array is None or np.ndim(value_array) == 0:
none_array_names += [key]
continue
# grab 1d arrays
if value_array.ndim == 1:
combined += (np.asarray(value_array),)
combined_names += [key]
elif value_array.squeeze().ndim == 1:
combined += (np.asarray(value_array),)
combined_names += [key]
# grab 2d arrays that are _assumed_ to be symmetric
elif value_array.ndim == 2:
combined_2d += (np.asarray(value_array),)
combined_2d_names += [key]
else:
raise ValueError("Arrays with more than 2 dimensions "
"are not yet handled")
if missing_idx is not None:
nan_mask = missing_idx
updated_row_mask = None
if combined: # there were extra arrays not handled by patsy
combined_nans = _nan_rows(*combined)
if combined_nans.shape[0] != nan_mask.shape[0]:
raise ValueError("Shape mismatch between endog/exog "
"and extra arrays given to model.")
# for going back and updated endog/exog
updated_row_mask = combined_nans[~nan_mask]
nan_mask |= combined_nans # for updating extra arrays only
if combined_2d:
combined_2d_nans = _nan_rows(combined_2d)
if combined_2d_nans.shape[0] != nan_mask.shape[0]:
raise ValueError("Shape mismatch between endog/exog "
"and extra 2d arrays given to model.")
if updated_row_mask is not None:
updated_row_mask |= combined_2d_nans[~nan_mask]
else:
updated_row_mask = combined_2d_nans[~nan_mask]
nan_mask |= combined_2d_nans
else:
nan_mask = _nan_rows(*combined)
if combined_2d:
nan_mask = _nan_rows(*(nan_mask[:, None],) + combined_2d)
if not np.any(nan_mask): # no missing do not do anything
combined = dict(zip(combined_names, combined))
if combined_2d:
combined.update(dict(zip(combined_2d_names, combined_2d)))
if none_array_names:
combined.update({k: kwargs.get(k, None)
for k in none_array_names})
if missing_idx is not None:
combined.update({'endog': endog})
if exog is not None:
combined.update({'exog': exog})
return combined, []
elif missing == 'raise':
raise MissingDataError("NaNs were encountered in the data")
elif missing == 'drop':
nan_mask = ~nan_mask
drop_nans = lambda x: cls._drop_nans(x, nan_mask)
drop_nans_2d = lambda x: cls._drop_nans_2d(x, nan_mask)
combined = dict(zip(combined_names, lmap(drop_nans, combined)))
if missing_idx is not None:
if updated_row_mask is not None:
updated_row_mask = ~updated_row_mask
# update endog/exog with this new information
endog = cls._drop_nans(endog, updated_row_mask)
if exog is not None:
exog = cls._drop_nans(exog, updated_row_mask)
combined.update({'endog': endog})
if exog is not None:
combined.update({'exog': exog})
if combined_2d:
combined.update(dict(zip(combined_2d_names,
lmap(drop_nans_2d, combined_2d))))
if none_array_names:
combined.update({k: kwargs.get(k, None)
for k in none_array_names})
return combined, np.where(~nan_mask)[0].tolist()
else:
raise ValueError("missing option %s not understood" % missing)
def _convert_endog_exog(self, endog, exog):
# for consistent outputs if endog is (n,1)
yarr = self._get_yarr(endog)
xarr = None
if exog is not None:
xarr = self._get_xarr(exog)
if xarr.ndim == 1:
xarr = xarr[:, None]
if xarr.ndim != 2:
raise ValueError("exog is not 1d or 2d")
return yarr, xarr
@cache_writable()
def ynames(self):
endog = self.orig_endog
ynames = self._get_names(endog)
if not ynames:
ynames = _make_endog_names(self.endog)
if len(ynames) == 1:
return ynames[0]
else:
return list(ynames)
@cache_writable()
def xnames(self) -> list[str] | None:
exog = self.orig_exog
if exog is not None:
xnames = self._get_names(exog)
if not xnames:
xnames = _make_exog_names(self.exog)
return list(xnames)
return None
@property
def param_names(self):
# for handling names of 'extra' parameters in summary, etc.
return self._param_names or self.xnames
@param_names.setter
def param_names(self, values):
self._param_names = values
@property
def cov_names(self):
"""
Labels for covariance matrices
In multidimensional models, each dimension of a covariance matrix
differs from the number of param_names.
If not set, returns param_names
"""
# for handling names of covariance names in multidimensional models
if self._cov_names is not None:
return self._cov_names
return self.param_names
@cov_names.setter
def cov_names(self, value):
# for handling names of covariance names in multidimensional models
self._cov_names = value
@cache_readonly
def row_labels(self):
exog = self.orig_exog
if exog is not None:
row_labels = self._get_row_labels(exog)
else:
endog = self.orig_endog
row_labels = self._get_row_labels(endog)
return row_labels
def _get_row_labels(self, arr):
return None
def _get_names(self, arr):
if isinstance(arr, DataFrame):
if isinstance(arr.columns, MultiIndex):
# Flatten MultiIndexes into "simple" column names
return ['_'.join(level for level in c if level)
for c in arr.columns]
else:
return list(arr.columns)
elif isinstance(arr, Series):
if arr.name:
return [arr.name]
else:
return
else:
try:
return arr.dtype.names
except AttributeError:
pass
return None
def _get_yarr(self, endog):
if data_util._is_structured_ndarray(endog):
endog = data_util.struct_to_ndarray(endog)
endog = np.asarray(endog)
if len(endog) == 1: # never squeeze to a scalar
if endog.ndim == 1:
return endog
elif endog.ndim > 1:
return np.asarray([endog.squeeze()])
return endog.squeeze()
def _get_xarr(self, exog):
if data_util._is_structured_ndarray(exog):
exog = data_util.struct_to_ndarray(exog)
return np.asarray(exog)
def _check_integrity(self):
if self.exog is not None:
if len(self.exog) != len(self.endog):
raise ValueError("endog and exog matrices are different sizes")
def wrap_output(self, obj, how='columns', names=None):
if how == 'columns':
return self.attach_columns(obj)
elif how == 'rows':
return self.attach_rows(obj)
elif how == 'cov':
return self.attach_cov(obj)
elif how == 'dates':
return self.attach_dates(obj)
elif how == 'columns_eq':
return self.attach_columns_eq(obj)
elif how == 'cov_eq':
return self.attach_cov_eq(obj)
elif how == 'generic_columns':
return self.attach_generic_columns(obj, names)
elif how == 'generic_columns_2d':
return self.attach_generic_columns_2d(obj, names)
elif how == 'ynames':
return self.attach_ynames(obj)
elif how == 'multivariate_confint':
return self.attach_mv_confint(obj)
else:
return obj
def attach_columns(self, result):
return result
def attach_columns_eq(self, result):
return result
def attach_cov(self, result):
return result
def attach_cov_eq(self, result):
return result
def attach_rows(self, result):
return result
def attach_dates(self, result):
return result
def attach_mv_confint(self, result):
return result
def attach_generic_columns(self, result, *args, **kwargs):
return result
def attach_generic_columns_2d(self, result, *args, **kwargs):
return result
def attach_ynames(self, result):
return result
class PatsyData(ModelData):
def _get_names(self, arr):
return arr.design_info.column_names
class PandasData(ModelData):
"""
Data handling class which knows how to reattach pandas metadata to model
results
"""
def _convert_endog_exog(self, endog, exog=None):
#TODO: remove this when we handle dtype systematically
endog = np.asarray(endog)
exog = exog if exog is None else np.asarray(exog)
if endog.dtype == object or exog is not None and exog.dtype == object:
raise ValueError("Pandas data cast to numpy dtype of object. "
"Check input data with np.asarray(data).")
return super()._convert_endog_exog(endog, exog)
@classmethod
def _drop_nans(cls, x, nan_mask):
if isinstance(x, (Series, DataFrame)):
return x.loc[nan_mask]
else: # extra arguments could be plain ndarrays
return super()._drop_nans(x, nan_mask)
@classmethod
def _drop_nans_2d(cls, x, nan_mask):
if isinstance(x, (Series, DataFrame)):
return x.loc[nan_mask].loc[:, nan_mask]
else: # extra arguments could be plain ndarrays
return super()._drop_nans_2d(x, nan_mask)
def _check_integrity(self):
endog, exog = self.orig_endog, self.orig_exog
# exog can be None and we could be upcasting one or the other
if (exog is not None and
(hasattr(endog, 'index') and hasattr(exog, 'index')) and
not self.orig_endog.index.equals(self.orig_exog.index)):
raise ValueError("The indices for endog and exog are not aligned")
super()._check_integrity()
def _get_row_labels(self, arr):
try:
return arr.index
except AttributeError:
# if we've gotten here it's because endog is pandas and
# exog is not, so just return the row labels from endog
return self.orig_endog.index
def attach_generic_columns(self, result, names):
# get the attribute to use
column_names = getattr(self, names, None)
return Series(result, index=column_names)
def attach_generic_columns_2d(self, result, rownames, colnames=None):
colnames = colnames or rownames
rownames = getattr(self, rownames, None)
colnames = getattr(self, colnames, None)
return DataFrame(result, index=rownames, columns=colnames)
def attach_columns(self, result):
# this can either be a 1d array or a scalar
# do not squeeze because it might be a 2d row array
# if it needs a squeeze, the bug is elsewhere
if result.ndim <= 1:
return Series(result, index=self.param_names)
else: # for e.g., confidence intervals
return DataFrame(result, index=self.param_names)
def attach_columns_eq(self, result):
return DataFrame(result, index=self.xnames, columns=self.ynames)
def attach_cov(self, result):
return DataFrame(result, index=self.cov_names, columns=self.cov_names)
def attach_cov_eq(self, result):
return DataFrame(result, index=self.ynames, columns=self.ynames)
def attach_rows(self, result):
# assumes if len(row_labels) > len(result) it's bc it was truncated
# at the front, for AR lags, for example
squeezed = result.squeeze()
k_endog = np.array(self.ynames, ndmin=1).shape[0]
if k_endog > 1 and squeezed.shape == (k_endog,):
squeezed = squeezed[None, :]
# May be zero-dim, for example in the case of forecast one step in tsa
if squeezed.ndim < 2:
out = Series(squeezed)
else:
out = DataFrame(result)
out.columns = self.ynames
out.index = self.row_labels[-len(result):]
return out
def attach_dates(self, result):
squeezed = result.squeeze()
k_endog = np.array(self.ynames, ndmin=1).shape[0]
if k_endog > 1 and squeezed.shape == (k_endog,):
squeezed = np.asarray(squeezed)[None, :]
# May be zero-dim, for example in the case of forecast one step in tsa
if squeezed.ndim < 2:
return Series(squeezed, index=self.predict_dates)
else:
return DataFrame(np.asarray(result),
index=self.predict_dates,
columns=self.ynames)
def attach_mv_confint(self, result):
return DataFrame(result.reshape((-1, 2)),
index=self.cov_names,
columns=['lower', 'upper'])
def attach_ynames(self, result):
squeezed = result.squeeze()
# May be zero-dim, for example in the case of forecast one step in tsa
if squeezed.ndim < 2:
return Series(squeezed, name=self.ynames)
else:
return DataFrame(result, columns=self.ynames)
def _make_endog_names(endog):
if endog.ndim == 1 or endog.shape[1] == 1:
ynames = ['y']
else: # for VAR
ynames = ['y%d' % (i+1) for i in range(endog.shape[1])]
return ynames
def _make_exog_names(exog):
exog_var = exog.var(0)
if (exog_var == 0).any():
# assumes one constant in first or last position
# avoid exception if more than one constant
const_idx = exog_var.argmin()
exog_names = ['x%d' % i for i in range(1, exog.shape[1])]
exog_names.insert(const_idx, 'const')
else:
exog_names = ['x%d' % i for i in range(1, exog.shape[1]+1)]
return exog_names
def handle_missing(endog, exog=None, missing='none', **kwargs):
klass = handle_data_class_factory(endog, exog)
if missing == 'none':
ret_dict = dict(endog=endog, exog=exog)
ret_dict.update(kwargs)
return ret_dict, None
return klass.handle_missing(endog, exog, missing=missing, **kwargs)
def handle_data_class_factory(endog, exog):
"""
Given inputs
"""
if data_util._is_using_ndarray_type(endog, exog):
klass = ModelData
elif data_util._is_using_pandas(endog, exog):
klass = PandasData
elif data_util._is_using_patsy(endog, exog):
klass = PatsyData
# keep this check last
elif data_util._is_using_ndarray(endog, exog):
klass = ModelData
else:
raise ValueError('unrecognized data structures: %s / %s' %
(type(endog), type(exog)))
return klass
def handle_data(endog, exog, missing='none', hasconst=None, **kwargs):
# deal with lists and tuples up-front
if isinstance(endog, (list, tuple)):
endog = np.asarray(endog)
if isinstance(exog, (list, tuple)):
exog = np.asarray(exog)
klass = handle_data_class_factory(endog, exog)
return klass(endog, exog=exog, missing=missing, hasconst=hasconst,
**kwargs)