AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/statsmodels/base/_parameter_inference.py
2024-10-02 22:15:59 +04:00

404 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Created on Wed May 30 15:11:09 2018
@author: josef
"""
import numpy as np
from scipy import stats
# this is a copy from stats._diagnostic_other to avoid circular imports
def _lm_robust(score, constraint_matrix, score_deriv_inv, cov_score,
cov_params=None):
'''general formula for score/LM test
generalized score or lagrange multiplier test for implicit constraints
`r(params) = 0`, with gradient `R = d r / d params`
linear constraints are given by `R params - q = 0`
It is assumed that all arrays are evaluated at the constrained estimates.
Parameters
----------
score : ndarray, 1-D
derivative of objective function at estimated parameters
of constrained model
constraint_matrix R : ndarray
Linear restriction matrix or Jacobian of nonlinear constraints
score_deriv_inv, Ainv : ndarray, symmetric, square
inverse of second derivative of objective function
TODO: could be inverse of OPG or any other estimator if information
matrix equality holds
cov_score B : ndarray, symmetric, square
covariance matrix of the score. This is the inner part of a sandwich
estimator.
cov_params V : ndarray, symmetric, square
covariance of full parameter vector evaluated at constrained parameter
estimate. This can be specified instead of cov_score B.
Returns
-------
lm_stat : float
score/lagrange multiplier statistic
p-value : float
p-value of the LM test based on chisquare distribution
Notes
-----
'''
# shorthand alias
R, Ainv, B, V = constraint_matrix, score_deriv_inv, cov_score, cov_params
k_constraints = np.linalg.matrix_rank(R)
tmp = R.dot(Ainv)
wscore = tmp.dot(score) # C Ainv score
if B is None and V is None:
# only Ainv is given, so we assume information matrix identity holds
# computational short cut, should be same if Ainv == inv(B)
lm_stat = score.dot(Ainv.dot(score))
else:
# information matrix identity does not hold
if V is None:
inner = tmp.dot(B).dot(tmp.T)
else:
inner = R.dot(V).dot(R.T)
#lm_stat2 = wscore.dot(np.linalg.pinv(inner).dot(wscore))
# Let's assume inner is invertible, TODO: check if usecase for pinv exists
lm_stat = wscore.dot(np.linalg.solve(inner, wscore))
pval = stats.chi2.sf(lm_stat, k_constraints)
return lm_stat, pval, k_constraints
def score_test(self, exog_extra=None, params_constrained=None,
hypothesis='joint', cov_type=None, cov_kwds=None,
k_constraints=None, r_matrix=None, scale=None, observed=True):
"""score test for restrictions or for omitted variables
Null Hypothesis : constraints are satisfied
Alternative Hypothesis : at least one of the constraints does not hold
This allows to specify restricted and unrestricted model properties in
three different ways
- fit_constrained result: model contains score and hessian function for
the full, unrestricted model, but the parameter estimate in the results
instance is for the restricted model. This is the case if the model
was estimated with fit_constrained.
- restricted model with variable addition: If exog_extra is not None, then
it is assumed that the current model is a model with zero restrictions
and the unrestricted model is given by adding exog_extra as additional
explanatory variables.
- unrestricted model with restricted parameters explicitly provided. If
params_constrained is not None, then the model is assumed to be for the
unrestricted model, but the provided parameters are for the restricted
model.
TODO: This case will currently only work for `nonrobust` cov_type,
otherwise we will also need the restriction matrix provided by the user.
Parameters
----------
exog_extra : None or array_like
Explanatory variables that are jointly tested for inclusion in the
model, i.e. omitted variables.
params_constrained : array_like
estimated parameter of the restricted model. This can be the
parameter estimate for the current when testing for omitted
variables.
hypothesis : str, 'joint' (default) or 'separate'
If hypothesis is 'joint', then the chisquare test results for the
joint hypothesis that all constraints hold is returned.
If hypothesis is 'joint', then z-test results for each constraint
is returned.
This is currently only implemented for cov_type="nonrobust".
cov_type : str
Warning: only partially implemented so far, currently only "nonrobust"
and "HC0" are supported.
If cov_type is None, then the cov_type specified in fit for the Wald
tests is used.
If the cov_type argument is not None, then it will be used instead of
the Wald cov_type given in fit.
k_constraints : int or None
Number of constraints that were used in the estimation of params
restricted relative to the number of exog in the model.
This must be provided if no exog_extra are given. If exog_extra is
not None, then k_constraints is assumed to be zero if it is None.
observed : bool
If True, then the observed Hessian is used in calculating the
covariance matrix of the score. If false then the expected
information matrix is used. This currently only applies to GLM where
EIM is available.
Warning: This option might still change.
Returns
-------
chi2_stat : float
chisquare statistic for the score test
p-value : float
P-value of the score test based on the chisquare distribution.
df : int
Degrees of freedom used in the p-value calculation. This is equal
to the number of constraints.
Notes
-----
Status: experimental, several options are not implemented yet or are not
verified yet. Currently available ptions might also still change.
cov_type is 'nonrobust':
The covariance matrix for the score is based on the Hessian, i.e.
observed information matrix or optionally on the expected information
matrix.
cov_type is 'HC0'
The covariance matrix of the score is the simple empirical covariance of
score_obs without degrees of freedom correction.
"""
# TODO: we are computing unnecessary things for cov_type nonrobust
if hasattr(self, "_results"):
# use numpy if we have wrapper, not relevant if method
self = self._results
model = self.model
nobs = model.endog.shape[0] # model.nobs
# discrete Poisson does not have nobs
if params_constrained is None:
params_constrained = self.params
cov_type = cov_type if cov_type is not None else self.cov_type
if observed is False:
hess_kwd = {'observed': False}
else:
hess_kwd = {}
if exog_extra is None:
if hasattr(self, 'constraints'):
if isinstance(self.constraints, tuple):
r_matrix = self.constraints[0]
else:
r_matrix = self.constraints.coefs
k_constraints = r_matrix.shape[0]
else:
if k_constraints is None:
raise ValueError('if exog_extra is None, then k_constraints'
'needs to be given')
# we need to use results scale as additional parameter
if scale is not None:
# we need to use results scale as additional parameter, gh #7840
score_kwd = {'scale': scale}
hess_kwd['scale'] = scale
else:
score_kwd = {}
# duplicate computation of score, might not be needed
score = model.score(params_constrained, **score_kwd)
score_obs = model.score_obs(params_constrained, **score_kwd)
hessian = model.hessian(params_constrained, **hess_kwd)
else:
if cov_type == 'V':
raise ValueError('if exog_extra is not None, then cov_type cannot '
'be V')
if hasattr(self, 'constraints'):
raise NotImplementedError('if exog_extra is not None, then self'
'should not be a constrained fit result')
if isinstance(exog_extra, tuple):
sh = _scorehess_extra(self, params_constrained, *exog_extra,
hess_kwds=hess_kwd)
score_obs, hessian, k_constraints, r_matrix = sh
score = score_obs.sum(0)
else:
exog_extra = np.asarray(exog_extra)
k_constraints = 0
ex = np.column_stack((model.exog, exog_extra))
# this uses shape not matrix rank to determine k_constraints
# requires nonsingular (no added perfect collinearity)
k_constraints += ex.shape[1] - model.exog.shape[1]
# TODO use diag instead of full np.eye
r_matrix = np.eye(len(self.params) + k_constraints
)[-k_constraints:]
score_factor = model.score_factor(params_constrained)
if score_factor.ndim == 1:
score_obs = (score_factor[:, None] * ex)
else:
sf = score_factor
score_obs = np.column_stack((sf[:, :1] * ex, sf[:, 1:]))
score = score_obs.sum(0)
hessian_factor = model.hessian_factor(params_constrained,
**hess_kwd)
# see #4714
from statsmodels.genmod.generalized_linear_model import GLM
if isinstance(model, GLM):
hessian_factor *= -1
hessian = np.dot(ex.T * hessian_factor, ex)
if cov_type == 'nonrobust':
cov_score_test = -hessian
elif cov_type.upper() == 'HC0':
hinv = -np.linalg.inv(hessian)
cov_score = nobs * np.cov(score_obs.T)
# temporary to try out
lm = _lm_robust(score, r_matrix, hinv, cov_score, cov_params=None)
return lm
# alternative is to use only the center, but it is singular
# https://github.com/statsmodels/statsmodels/pull/2096#issuecomment-393646205
# cov_score_test_inv = cov_lm_robust(score, r_matrix, hinv,
# cov_score, cov_params=None)
elif cov_type.upper() == 'V':
# TODO: this does not work, V in fit_constrained results is singular
# we need cov_params without the zeros in it
hinv = -np.linalg.inv(hessian)
cov_score = nobs * np.cov(score_obs.T)
V = self.cov_params_default
# temporary to try out
chi2stat = _lm_robust(score, r_matrix, hinv, cov_score, cov_params=V)
pval = stats.chi2.sf(chi2stat, k_constraints)
return chi2stat, pval
else:
msg = 'Only cov_type "nonrobust" and "HC0" are available.'
raise NotImplementedError(msg)
if hypothesis == 'joint':
chi2stat = score.dot(np.linalg.solve(cov_score_test, score[:, None]))
pval = stats.chi2.sf(chi2stat, k_constraints)
# return a stats results instance instead? Contrast?
return chi2stat, pval, k_constraints
elif hypothesis == 'separate':
diff = score
bse = np.sqrt(np.diag(cov_score_test))
stat = diff / bse
pval = stats.norm.sf(np.abs(stat))*2
return stat, pval
else:
raise NotImplementedError('only hypothesis "joint" is available')
def _scorehess_extra(self, params=None, exog_extra=None,
exog2_extra=None, hess_kwds=None):
"""Experimental helper function for variable addition score test.
This uses score and hessian factor at the params which should be the
params of the restricted model.
"""
if hess_kwds is None:
hess_kwds = {}
# this corresponds to a model methods, so we need only the model
model = self.model
# as long as we have results instance, we can take params from it
if params is None:
params = self.params
# get original exog from model, currently only if exactly 2
exog_o1, exog_o2 = model._get_exogs()
if exog_o2 is None:
# if extra params is scalar, as in NB, GPP
exog_o2 = np.ones((exog_o1.shape[0], 1))
k_mean = exog_o1.shape[1]
k_prec = exog_o2.shape[1]
if exog_extra is not None:
exog = np.column_stack((exog_o1, exog_extra))
else:
exog = exog_o1
if exog2_extra is not None:
exog2 = np.column_stack((exog_o2, exog2_extra))
else:
exog2 = exog_o2
k_mean_new = exog.shape[1]
k_prec_new = exog2.shape[1]
k_cm = k_mean_new - k_mean
k_cp = k_prec_new - k_prec
k_constraints = k_cm + k_cp
index_mean = np.arange(k_mean, k_mean_new)
index_prec = np.arange(k_mean_new + k_prec, k_mean_new + k_prec_new)
r_matrix = np.zeros((k_constraints, len(params) + k_constraints))
# print(exog.shape, exog2.shape)
# print(r_matrix.shape, k_cm, k_cp, k_mean_new, k_prec_new)
# print(index_mean, index_prec)
r_matrix[:k_cm, index_mean] = np.eye(k_cm)
r_matrix[k_cm: k_cm + k_cp, index_prec] = np.eye(k_cp)
if hasattr(model, "score_hessian_factor"):
sf, hf = model.score_hessian_factor(params, return_hessian=True,
**hess_kwds)
else:
sf = model.score_factor(params)
hf = model.hessian_factor(params, **hess_kwds)
sf1, sf2 = sf
hf11, hf12, hf22 = hf
# elementwise product for each row (observation)
d1 = sf1[:, None] * exog
d2 = sf2[:, None] * exog2
score_obs = np.column_stack((d1, d2))
# elementwise product for each row (observation)
d11 = (exog.T * hf11).dot(exog)
d12 = (exog.T * hf12).dot(exog2)
d22 = (exog2.T * hf22).dot(exog2)
hessian = np.block([[d11, d12], [d12.T, d22]])
return score_obs, hessian, k_constraints, r_matrix
def im_ratio(results):
res = getattr(results, "_results", results) # shortcut
hess = res.model.hessian(res.params)
if res.cov_type == "nonrobust":
score_obs = res.model.score_obs(res.params)
cov_score = score_obs.T @ score_obs
hessneg_inv = np.linalg.inv(-hess)
im_ratio = hessneg_inv @ cov_score
else:
im_ratio = res.cov_params() @ (-hess)
return im_ratio
def tic(results):
"""Takeuchi information criterion for misspecified models
"""
imr = getattr(results, "im_ratio", im_ratio(results))
tic = - 2 * results.llf + 2 * np.trace(imr)
return tic
def gbic(results, gbicp=False):
"""generalized BIC for misspecified models
References
----------
Lv, Jinchi, and Jun S. Liu. 2014. "Model Selection Principles in
Misspecified Models." Journal of the Royal Statistical Society.
Series B (Statistical Methodology) 76 (1): 14167.
"""
self = getattr(results, "_results", results)
k_params = self.df_model + 1
nobs = k_params + self.df_resid
imr = getattr(results, "im_ratio", im_ratio(results))
imr_logdet = np.linalg.slogdet(imr)[1]
gbic = -2 * self.llf + k_params * np.log(nobs) - imr_logdet # LL equ. (20)
gbicp = gbic + np.trace(imr) # LL equ. (23)
return gbic, gbicp