492 lines
20 KiB
Python
492 lines
20 KiB
Python
import queue
|
|
import threading
|
|
import multiprocessing
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.random import random
|
|
from numpy.testing import assert_array_almost_equal, assert_allclose
|
|
from pytest import raises as assert_raises
|
|
import scipy.fft as fft
|
|
from scipy.conftest import array_api_compatible
|
|
from scipy._lib._array_api import (
|
|
array_namespace, size, xp_assert_close, xp_assert_equal
|
|
)
|
|
|
|
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")]
|
|
skip_xp_backends = pytest.mark.skip_xp_backends
|
|
|
|
|
|
# Expected input dtypes. Note that `scipy.fft` is more flexible for numpy,
|
|
# but for C2C transforms like `fft.fft`, the array API standard only mandates
|
|
# that complex dtypes should work, float32/float64 aren't guaranteed to.
|
|
def get_expected_input_dtype(func, xp):
|
|
if func in [fft.fft, fft.fftn, fft.fft2,
|
|
fft.ifft, fft.ifftn, fft.ifft2,
|
|
fft.hfft, fft.hfftn, fft.hfft2,
|
|
fft.irfft, fft.irfftn, fft.irfft2]:
|
|
dtype = xp.complex128
|
|
elif func in [fft.rfft, fft.rfftn, fft.rfft2,
|
|
fft.ihfft, fft.ihfftn, fft.ihfft2]:
|
|
dtype = xp.float64
|
|
else:
|
|
raise ValueError(f'Unknown FFT function: {func}')
|
|
|
|
return dtype
|
|
|
|
|
|
def fft1(x):
|
|
L = len(x)
|
|
phase = -2j*np.pi*(np.arange(L)/float(L))
|
|
phase = np.arange(L).reshape(-1, 1) * phase
|
|
return np.sum(x*np.exp(phase), axis=1)
|
|
|
|
class TestFFT:
|
|
|
|
def test_identity(self, xp):
|
|
maxlen = 512
|
|
x = xp.asarray(random(maxlen) + 1j*random(maxlen))
|
|
xr = xp.asarray(random(maxlen))
|
|
# Check some powers of 2 and some primes
|
|
for i in [1, 2, 16, 128, 512, 53, 149, 281, 397]:
|
|
xp_assert_close(fft.ifft(fft.fft(x[0:i])), x[0:i])
|
|
xp_assert_close(fft.irfft(fft.rfft(xr[0:i]), i), xr[0:i])
|
|
|
|
@skip_xp_backends(np_only=True, reasons=['significant overhead for some backends'])
|
|
def test_identity_extensive(self, xp):
|
|
maxlen = 512
|
|
x = xp.asarray(random(maxlen) + 1j*random(maxlen))
|
|
xr = xp.asarray(random(maxlen))
|
|
for i in range(1, maxlen):
|
|
xp_assert_close(fft.ifft(fft.fft(x[0:i])), x[0:i])
|
|
xp_assert_close(fft.irfft(fft.rfft(xr[0:i]), i), xr[0:i])
|
|
|
|
def test_fft(self, xp):
|
|
x = random(30) + 1j*random(30)
|
|
expect = xp.asarray(fft1(x))
|
|
x = xp.asarray(x)
|
|
xp_assert_close(fft.fft(x), expect)
|
|
xp_assert_close(fft.fft(x, norm="backward"), expect)
|
|
xp_assert_close(fft.fft(x, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64)),)
|
|
xp_assert_close(fft.fft(x, norm="forward"), expect / 30)
|
|
|
|
@skip_xp_backends(np_only=True, reasons=['some backends allow `n=0`'])
|
|
def test_fft_n(self, xp):
|
|
x = xp.asarray([1, 2, 3], dtype=xp.complex128)
|
|
assert_raises(ValueError, fft.fft, x, 0)
|
|
|
|
def test_ifft(self, xp):
|
|
x = xp.asarray(random(30) + 1j*random(30))
|
|
xp_assert_close(fft.ifft(fft.fft(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.ifft(fft.fft(x, norm=norm), norm=norm), x)
|
|
|
|
def test_fft2(self, xp):
|
|
x = xp.asarray(random((30, 20)) + 1j*random((30, 20)))
|
|
expect = fft.fft(fft.fft(x, axis=1), axis=0)
|
|
xp_assert_close(fft.fft2(x), expect)
|
|
xp_assert_close(fft.fft2(x, norm="backward"), expect)
|
|
xp_assert_close(fft.fft2(x, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64)))
|
|
xp_assert_close(fft.fft2(x, norm="forward"), expect / (30 * 20))
|
|
|
|
def test_ifft2(self, xp):
|
|
x = xp.asarray(random((30, 20)) + 1j*random((30, 20)))
|
|
expect = fft.ifft(fft.ifft(x, axis=1), axis=0)
|
|
xp_assert_close(fft.ifft2(x), expect)
|
|
xp_assert_close(fft.ifft2(x, norm="backward"), expect)
|
|
xp_assert_close(fft.ifft2(x, norm="ortho"),
|
|
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64)))
|
|
xp_assert_close(fft.ifft2(x, norm="forward"), expect * (30 * 20))
|
|
|
|
def test_fftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10)))
|
|
expect = fft.fft(fft.fft(fft.fft(x, axis=2), axis=1), axis=0)
|
|
xp_assert_close(fft.fftn(x), expect)
|
|
xp_assert_close(fft.fftn(x, norm="backward"), expect)
|
|
xp_assert_close(fft.fftn(x, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)))
|
|
xp_assert_close(fft.fftn(x, norm="forward"), expect / (30 * 20 * 10))
|
|
|
|
def test_ifftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10)))
|
|
expect = fft.ifft(fft.ifft(fft.ifft(x, axis=2), axis=1), axis=0)
|
|
xp_assert_close(fft.ifftn(x), expect, rtol=1e-7)
|
|
xp_assert_close(fft.ifftn(x, norm="backward"), expect, rtol=1e-7)
|
|
xp_assert_close(
|
|
fft.ifftn(x, norm="ortho"),
|
|
fft.ifftn(x) * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))
|
|
)
|
|
xp_assert_close(fft.ifftn(x, norm="forward"),
|
|
expect * (30 * 20 * 10),
|
|
rtol=1e-7)
|
|
|
|
def test_rfft(self, xp):
|
|
x = xp.asarray(random(29), dtype=xp.float64)
|
|
for n in [size(x), 2*size(x)]:
|
|
for norm in [None, "backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.rfft(x, n=n, norm=norm),
|
|
fft.fft(xp.asarray(x, dtype=xp.complex128),
|
|
n=n, norm=norm)[:(n//2 + 1)])
|
|
xp_assert_close(
|
|
fft.rfft(x, n=n, norm="ortho"),
|
|
fft.rfft(x, n=n) / xp.sqrt(xp.asarray(n, dtype=xp.float64))
|
|
)
|
|
|
|
def test_irfft(self, xp):
|
|
x = xp.asarray(random(30))
|
|
xp_assert_close(fft.irfft(fft.rfft(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.irfft(fft.rfft(x, norm=norm), norm=norm), x)
|
|
|
|
def test_rfft2(self, xp):
|
|
x = xp.asarray(random((30, 20)), dtype=xp.float64)
|
|
expect = fft.fft2(xp.asarray(x, dtype=xp.complex128))[:, :11]
|
|
xp_assert_close(fft.rfft2(x), expect)
|
|
xp_assert_close(fft.rfft2(x, norm="backward"), expect)
|
|
xp_assert_close(fft.rfft2(x, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64)))
|
|
xp_assert_close(fft.rfft2(x, norm="forward"), expect / (30 * 20))
|
|
|
|
def test_irfft2(self, xp):
|
|
x = xp.asarray(random((30, 20)))
|
|
xp_assert_close(fft.irfft2(fft.rfft2(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.irfft2(fft.rfft2(x, norm=norm), norm=norm), x)
|
|
|
|
def test_rfftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64)
|
|
expect = fft.fftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6]
|
|
xp_assert_close(fft.rfftn(x), expect)
|
|
xp_assert_close(fft.rfftn(x, norm="backward"), expect)
|
|
xp_assert_close(fft.rfftn(x, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)))
|
|
xp_assert_close(fft.rfftn(x, norm="forward"), expect / (30 * 20 * 10))
|
|
|
|
def test_irfftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)))
|
|
xp_assert_close(fft.irfftn(fft.rfftn(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.irfftn(fft.rfftn(x, norm=norm), norm=norm), x)
|
|
|
|
def test_hfft(self, xp):
|
|
x = random(14) + 1j*random(14)
|
|
x_herm = np.concatenate((random(1), x, random(1)))
|
|
x = np.concatenate((x_herm, x[::-1].conj()))
|
|
x = xp.asarray(x)
|
|
x_herm = xp.asarray(x_herm)
|
|
expect = xp.real(fft.fft(x))
|
|
xp_assert_close(fft.hfft(x_herm), expect)
|
|
xp_assert_close(fft.hfft(x_herm, norm="backward"), expect)
|
|
xp_assert_close(fft.hfft(x_herm, norm="ortho"),
|
|
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64)))
|
|
xp_assert_close(fft.hfft(x_herm, norm="forward"), expect / 30)
|
|
|
|
def test_ihfft(self, xp):
|
|
x = random(14) + 1j*random(14)
|
|
x_herm = np.concatenate((random(1), x, random(1)))
|
|
x = np.concatenate((x_herm, x[::-1].conj()))
|
|
x = xp.asarray(x)
|
|
x_herm = xp.asarray(x_herm)
|
|
xp_assert_close(fft.ihfft(fft.hfft(x_herm)), x_herm)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.ihfft(fft.hfft(x_herm, norm=norm), norm=norm), x_herm)
|
|
|
|
def test_hfft2(self, xp):
|
|
x = xp.asarray(random((30, 20)))
|
|
xp_assert_close(fft.hfft2(fft.ihfft2(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.hfft2(fft.ihfft2(x, norm=norm), norm=norm), x)
|
|
|
|
def test_ihfft2(self, xp):
|
|
x = xp.asarray(random((30, 20)), dtype=xp.float64)
|
|
expect = fft.ifft2(xp.asarray(x, dtype=xp.complex128))[:, :11]
|
|
xp_assert_close(fft.ihfft2(x), expect)
|
|
xp_assert_close(fft.ihfft2(x, norm="backward"), expect)
|
|
xp_assert_close(
|
|
fft.ihfft2(x, norm="ortho"),
|
|
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))
|
|
)
|
|
xp_assert_close(fft.ihfft2(x, norm="forward"), expect * (30 * 20))
|
|
|
|
def test_hfftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)))
|
|
xp_assert_close(fft.hfftn(fft.ihfftn(x)), x)
|
|
for norm in ["backward", "ortho", "forward"]:
|
|
xp_assert_close(fft.hfftn(fft.ihfftn(x, norm=norm), norm=norm), x)
|
|
|
|
def test_ihfftn(self, xp):
|
|
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64)
|
|
expect = fft.ifftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6]
|
|
xp_assert_close(expect, fft.ihfftn(x))
|
|
xp_assert_close(expect, fft.ihfftn(x, norm="backward"))
|
|
xp_assert_close(
|
|
fft.ihfftn(x, norm="ortho"),
|
|
expect * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))
|
|
)
|
|
xp_assert_close(fft.ihfftn(x, norm="forward"), expect * (30 * 20 * 10))
|
|
|
|
def _check_axes(self, op, xp):
|
|
dtype = get_expected_input_dtype(op, xp)
|
|
x = xp.asarray(random((30, 20, 10)), dtype=dtype)
|
|
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
|
|
xp_test = array_namespace(x)
|
|
for a in axes:
|
|
op_tr = op(xp_test.permute_dims(x, axes=a))
|
|
tr_op = xp_test.permute_dims(op(x, axes=a), axes=a)
|
|
xp_assert_close(op_tr, tr_op)
|
|
|
|
@pytest.mark.parametrize("op", [fft.fftn, fft.ifftn, fft.rfftn, fft.irfftn])
|
|
def test_axes_standard(self, op, xp):
|
|
self._check_axes(op, xp)
|
|
|
|
@pytest.mark.parametrize("op", [fft.hfftn, fft.ihfftn])
|
|
def test_axes_non_standard(self, op, xp):
|
|
self._check_axes(op, xp)
|
|
|
|
@pytest.mark.parametrize("op", [fft.fftn, fft.ifftn,
|
|
fft.rfftn, fft.irfftn])
|
|
def test_axes_subset_with_shape_standard(self, op, xp):
|
|
dtype = get_expected_input_dtype(op, xp)
|
|
x = xp.asarray(random((16, 8, 4)), dtype=dtype)
|
|
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)]
|
|
xp_test = array_namespace(x)
|
|
for a in axes:
|
|
# different shape on the first two axes
|
|
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax]
|
|
for ax in range(x.ndim)])
|
|
# transform only the first two axes
|
|
op_tr = op(xp_test.permute_dims(x, axes=a),
|
|
s=shape[:2], axes=(0, 1))
|
|
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]),
|
|
axes=a)
|
|
xp_assert_close(op_tr, tr_op)
|
|
|
|
@pytest.mark.parametrize("op", [fft.fft2, fft.ifft2,
|
|
fft.rfft2, fft.irfft2,
|
|
fft.hfft2, fft.ihfft2,
|
|
fft.hfftn, fft.ihfftn])
|
|
def test_axes_subset_with_shape_non_standard(self, op, xp):
|
|
dtype = get_expected_input_dtype(op, xp)
|
|
x = xp.asarray(random((16, 8, 4)), dtype=dtype)
|
|
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)]
|
|
xp_test = array_namespace(x)
|
|
for a in axes:
|
|
# different shape on the first two axes
|
|
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax]
|
|
for ax in range(x.ndim)])
|
|
# transform only the first two axes
|
|
op_tr = op(xp_test.permute_dims(x, axes=a), s=shape[:2], axes=(0, 1))
|
|
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]), axes=a)
|
|
xp_assert_close(op_tr, tr_op)
|
|
|
|
def test_all_1d_norm_preserving(self, xp):
|
|
# verify that round-trip transforms are norm-preserving
|
|
x = xp.asarray(random(30), dtype=xp.float64)
|
|
xp_test = array_namespace(x)
|
|
x_norm = xp_test.linalg.vector_norm(x)
|
|
n = size(x) * 2
|
|
func_pairs = [(fft.rfft, fft.irfft),
|
|
# hfft: order so the first function takes x.size samples
|
|
# (necessary for comparison to x_norm above)
|
|
(fft.ihfft, fft.hfft),
|
|
# functions that expect complex dtypes at the end
|
|
(fft.fft, fft.ifft),
|
|
]
|
|
for forw, back in func_pairs:
|
|
if forw == fft.fft:
|
|
x = xp.asarray(x, dtype=xp.complex128)
|
|
x_norm = xp_test.linalg.vector_norm(x)
|
|
for n in [size(x), 2*size(x)]:
|
|
for norm in ['backward', 'ortho', 'forward']:
|
|
tmp = forw(x, n=n, norm=norm)
|
|
tmp = back(tmp, n=n, norm=norm)
|
|
xp_assert_close(xp_test.linalg.vector_norm(tmp), x_norm)
|
|
|
|
@skip_xp_backends(np_only=True)
|
|
@pytest.mark.parametrize("dtype", [np.float16, np.longdouble])
|
|
def test_dtypes_nonstandard(self, dtype):
|
|
x = random(30).astype(dtype)
|
|
out_dtypes = {np.float16: np.complex64, np.longdouble: np.clongdouble}
|
|
x_complex = x.astype(out_dtypes[dtype])
|
|
|
|
res_fft = fft.ifft(fft.fft(x))
|
|
res_rfft = fft.irfft(fft.rfft(x))
|
|
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0])
|
|
# Check both numerical results and exact dtype matches
|
|
assert_array_almost_equal(res_fft, x_complex)
|
|
assert_array_almost_equal(res_rfft, x)
|
|
assert_array_almost_equal(res_hfft, x)
|
|
assert res_fft.dtype == x_complex.dtype
|
|
assert res_rfft.dtype == np.result_type(np.float32, x.dtype)
|
|
assert res_hfft.dtype == np.result_type(np.float32, x.dtype)
|
|
|
|
@pytest.mark.parametrize("dtype", ["float32", "float64"])
|
|
def test_dtypes_real(self, dtype, xp):
|
|
x = xp.asarray(random(30), dtype=getattr(xp, dtype))
|
|
|
|
res_rfft = fft.irfft(fft.rfft(x))
|
|
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0])
|
|
# Check both numerical results and exact dtype matches
|
|
xp_assert_close(res_rfft, x)
|
|
xp_assert_close(res_hfft, x)
|
|
|
|
@pytest.mark.parametrize("dtype", ["complex64", "complex128"])
|
|
def test_dtypes_complex(self, dtype, xp):
|
|
x = xp.asarray(random(30), dtype=getattr(xp, dtype))
|
|
|
|
res_fft = fft.ifft(fft.fft(x))
|
|
# Check both numerical results and exact dtype matches
|
|
xp_assert_close(res_fft, x)
|
|
|
|
@skip_xp_backends(np_only=True,
|
|
reasons=['array-likes only supported for NumPy backend'])
|
|
@pytest.mark.parametrize("op", [fft.fft, fft.ifft,
|
|
fft.fft2, fft.ifft2,
|
|
fft.fftn, fft.ifftn,
|
|
fft.rfft, fft.irfft,
|
|
fft.rfft2, fft.irfft2,
|
|
fft.rfftn, fft.irfftn,
|
|
fft.hfft, fft.ihfft,
|
|
fft.hfft2, fft.ihfft2,
|
|
fft.hfftn, fft.ihfftn,])
|
|
def test_array_like(self, xp, op):
|
|
x = [[[1.0, 1.0], [1.0, 1.0]],
|
|
[[1.0, 1.0], [1.0, 1.0]],
|
|
[[1.0, 1.0], [1.0, 1.0]]]
|
|
xp_assert_close(op(x), op(xp.asarray(x)))
|
|
|
|
|
|
@skip_xp_backends(np_only=True)
|
|
@pytest.mark.parametrize(
|
|
"dtype",
|
|
[np.float32, np.float64, np.longdouble,
|
|
np.complex64, np.complex128, np.clongdouble])
|
|
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
|
|
@pytest.mark.parametrize(
|
|
"fft",
|
|
[fft.fft, fft.fft2, fft.fftn,
|
|
fft.ifft, fft.ifft2, fft.ifftn])
|
|
def test_fft_with_order(dtype, order, fft):
|
|
# Check that FFT/IFFT produces identical results for C, Fortran and
|
|
# non contiguous arrays
|
|
rng = np.random.RandomState(42)
|
|
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
|
|
if order == 'F':
|
|
Y = np.asfortranarray(X)
|
|
else:
|
|
# Make a non contiguous array
|
|
Y = X[::-1]
|
|
X = np.ascontiguousarray(X[::-1])
|
|
|
|
if fft.__name__.endswith('fft'):
|
|
for axis in range(3):
|
|
X_res = fft(X, axis=axis)
|
|
Y_res = fft(Y, axis=axis)
|
|
assert_array_almost_equal(X_res, Y_res)
|
|
elif fft.__name__.endswith(('fft2', 'fftn')):
|
|
axes = [(0, 1), (1, 2), (0, 2)]
|
|
if fft.__name__.endswith('fftn'):
|
|
axes.extend([(0,), (1,), (2,), None])
|
|
for ax in axes:
|
|
X_res = fft(X, axes=ax)
|
|
Y_res = fft(Y, axes=ax)
|
|
assert_array_almost_equal(X_res, Y_res)
|
|
else:
|
|
raise ValueError
|
|
|
|
|
|
@skip_xp_backends(cpu_only=True)
|
|
class TestFFTThreadSafe:
|
|
threads = 16
|
|
input_shape = (800, 200)
|
|
|
|
def _test_mtsame(self, func, *args, xp=None):
|
|
def worker(args, q):
|
|
q.put(func(*args))
|
|
|
|
q = queue.Queue()
|
|
expected = func(*args)
|
|
|
|
# Spin off a bunch of threads to call the same function simultaneously
|
|
t = [threading.Thread(target=worker, args=(args, q))
|
|
for i in range(self.threads)]
|
|
[x.start() for x in t]
|
|
|
|
[x.join() for x in t]
|
|
|
|
# Make sure all threads returned the correct value
|
|
for i in range(self.threads):
|
|
xp_assert_equal(
|
|
q.get(timeout=5), expected,
|
|
err_msg='Function returned wrong value in multithreaded context'
|
|
)
|
|
|
|
def test_fft(self, xp):
|
|
a = xp.ones(self.input_shape, dtype=xp.complex128)
|
|
self._test_mtsame(fft.fft, a, xp=xp)
|
|
|
|
def test_ifft(self, xp):
|
|
a = xp.full(self.input_shape, 1+0j)
|
|
self._test_mtsame(fft.ifft, a, xp=xp)
|
|
|
|
def test_rfft(self, xp):
|
|
a = xp.ones(self.input_shape)
|
|
self._test_mtsame(fft.rfft, a, xp=xp)
|
|
|
|
def test_irfft(self, xp):
|
|
a = xp.full(self.input_shape, 1+0j)
|
|
self._test_mtsame(fft.irfft, a, xp=xp)
|
|
|
|
def test_hfft(self, xp):
|
|
a = xp.ones(self.input_shape, dtype=xp.complex64)
|
|
self._test_mtsame(fft.hfft, a, xp=xp)
|
|
|
|
def test_ihfft(self, xp):
|
|
a = xp.ones(self.input_shape)
|
|
self._test_mtsame(fft.ihfft, a, xp=xp)
|
|
|
|
|
|
@skip_xp_backends(np_only=True)
|
|
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.rfft, fft.irfft])
|
|
def test_multiprocess(func):
|
|
# Test that fft still works after fork (gh-10422)
|
|
|
|
with multiprocessing.Pool(2) as p:
|
|
res = p.map(func, [np.ones(100) for _ in range(4)])
|
|
|
|
expect = func(np.ones(100))
|
|
for x in res:
|
|
assert_allclose(x, expect)
|
|
|
|
|
|
class TestIRFFTN:
|
|
|
|
def test_not_last_axis_success(self, xp):
|
|
ar, ai = np.random.random((2, 16, 8, 32))
|
|
a = ar + 1j*ai
|
|
a = xp.asarray(a)
|
|
|
|
axes = (-2,)
|
|
|
|
# Should not raise error
|
|
fft.irfftn(a, axes=axes)
|
|
|
|
|
|
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.rfft, fft.irfft,
|
|
fft.fftn, fft.ifftn,
|
|
fft.rfftn, fft.irfftn, fft.hfft, fft.ihfft])
|
|
def test_non_standard_params(func, xp):
|
|
if func in [fft.rfft, fft.rfftn, fft.ihfft]:
|
|
dtype = xp.float64
|
|
else:
|
|
dtype = xp.complex128
|
|
|
|
if xp.__name__ != 'numpy':
|
|
x = xp.asarray([1, 2, 3], dtype=dtype)
|
|
# func(x) should not raise an exception
|
|
func(x)
|
|
assert_raises(ValueError, func, x, workers=2)
|
|
# `plan` param is not tested since SciPy does not use it currently
|
|
# but should be tested if it comes into use
|