221 lines
7.3 KiB
Python
221 lines
7.3 KiB
Python
from datetime import timedelta
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.indexes.timedeltas import timedelta_range
|
|
|
|
|
|
def test_asfreq_bug():
|
|
df = DataFrame(data=[1, 3], index=[timedelta(), timedelta(minutes=3)])
|
|
result = df.resample("1min").asfreq()
|
|
expected = DataFrame(
|
|
data=[1, np.nan, np.nan, 3],
|
|
index=timedelta_range("0 day", periods=4, freq="1min"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_with_nat():
|
|
# GH 13223
|
|
index = pd.to_timedelta(["0s", pd.NaT, "2s"])
|
|
result = DataFrame({"value": [2, 3, 5]}, index).resample("1s").mean()
|
|
expected = DataFrame(
|
|
{"value": [2.5, np.nan, 5.0]},
|
|
index=timedelta_range("0 day", periods=3, freq="1s"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_as_freq_with_subperiod():
|
|
# GH 13022
|
|
index = timedelta_range("00:00:00", "00:10:00", freq="5min")
|
|
df = DataFrame(data={"value": [1, 5, 10]}, index=index)
|
|
result = df.resample("2min").asfreq()
|
|
expected_data = {"value": [1, np.nan, np.nan, np.nan, np.nan, 10]}
|
|
expected = DataFrame(
|
|
data=expected_data, index=timedelta_range("00:00:00", "00:10:00", freq="2min")
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_with_timedeltas():
|
|
expected = DataFrame({"A": np.arange(1480)})
|
|
expected = expected.groupby(expected.index // 30).sum()
|
|
expected.index = timedelta_range("0 days", freq="30min", periods=50)
|
|
|
|
df = DataFrame(
|
|
{"A": np.arange(1480)}, index=pd.to_timedelta(np.arange(1480), unit="min")
|
|
)
|
|
result = df.resample("30min").sum()
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
s = df["A"]
|
|
result = s.resample("30min").sum()
|
|
tm.assert_series_equal(result, expected["A"])
|
|
|
|
|
|
def test_resample_single_period_timedelta():
|
|
s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5))
|
|
result = s.resample("2s").sum()
|
|
expected = Series([1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_resample_timedelta_idempotency():
|
|
# GH 12072
|
|
index = timedelta_range("0", periods=9, freq="10ms")
|
|
series = Series(range(9), index=index)
|
|
result = series.resample("10ms").mean()
|
|
expected = series.astype(float)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_resample_offset_with_timedeltaindex():
|
|
# GH 10530 & 31809
|
|
rng = timedelta_range(start="0s", periods=25, freq="s")
|
|
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
|
|
|
|
with_base = ts.resample("2s", offset="5s").mean()
|
|
without_base = ts.resample("2s").mean()
|
|
|
|
exp_without_base = timedelta_range(start="0s", end="25s", freq="2s")
|
|
exp_with_base = timedelta_range(start="5s", end="29s", freq="2s")
|
|
|
|
tm.assert_index_equal(without_base.index, exp_without_base)
|
|
tm.assert_index_equal(with_base.index, exp_with_base)
|
|
|
|
|
|
def test_resample_categorical_data_with_timedeltaindex():
|
|
# GH #12169
|
|
df = DataFrame({"Group_obj": "A"}, index=pd.to_timedelta(list(range(20)), unit="s"))
|
|
df["Group"] = df["Group_obj"].astype("category")
|
|
result = df.resample("10s").agg(lambda x: (x.value_counts().index[0]))
|
|
exp_tdi = pd.TimedeltaIndex(np.array([0, 10], dtype="m8[s]"), freq="10s").as_unit(
|
|
"ns"
|
|
)
|
|
expected = DataFrame(
|
|
{"Group_obj": ["A", "A"], "Group": ["A", "A"]},
|
|
index=exp_tdi,
|
|
)
|
|
expected = expected.reindex(["Group_obj", "Group"], axis=1)
|
|
expected["Group"] = expected["Group_obj"].astype("category")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_timedelta_values():
|
|
# GH 13119
|
|
# check that timedelta dtype is preserved when NaT values are
|
|
# introduced by the resampling
|
|
|
|
times = timedelta_range("1 day", "6 day", freq="4D")
|
|
df = DataFrame({"time": times}, index=times)
|
|
|
|
times2 = timedelta_range("1 day", "6 day", freq="2D")
|
|
exp = Series(times2, index=times2, name="time")
|
|
exp.iloc[1] = pd.NaT
|
|
|
|
res = df.resample("2D").first()["time"]
|
|
tm.assert_series_equal(res, exp)
|
|
res = df["time"].resample("2D").first()
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"start, end, freq, resample_freq",
|
|
[
|
|
("8h", "21h59min50s", "10s", "3h"), # GH 30353 example
|
|
("3h", "22h", "1h", "5h"),
|
|
("527D", "5006D", "3D", "10D"),
|
|
("1D", "10D", "1D", "2D"), # GH 13022 example
|
|
# tests that worked before GH 33498:
|
|
("8h", "21h59min50s", "10s", "2h"),
|
|
("0h", "21h59min50s", "10s", "3h"),
|
|
("10D", "85D", "D", "2D"),
|
|
],
|
|
)
|
|
def test_resample_timedelta_edge_case(start, end, freq, resample_freq):
|
|
# GH 33498
|
|
# check that the timedelta bins does not contains an extra bin
|
|
idx = timedelta_range(start=start, end=end, freq=freq)
|
|
s = Series(np.arange(len(idx)), index=idx)
|
|
result = s.resample(resample_freq).min()
|
|
expected_index = timedelta_range(freq=resample_freq, start=start, end=end)
|
|
tm.assert_index_equal(result.index, expected_index)
|
|
assert result.index.freq == expected_index.freq
|
|
assert not np.isnan(result.iloc[-1])
|
|
|
|
|
|
@pytest.mark.parametrize("duplicates", [True, False])
|
|
def test_resample_with_timedelta_yields_no_empty_groups(duplicates):
|
|
# GH 10603
|
|
df = DataFrame(
|
|
np.random.default_rng(2).normal(size=(10000, 4)),
|
|
index=timedelta_range(start="0s", periods=10000, freq="3906250ns"),
|
|
)
|
|
if duplicates:
|
|
# case with non-unique columns
|
|
df.columns = ["A", "B", "A", "C"]
|
|
|
|
result = df.loc["1s":, :].resample("3s").apply(lambda x: len(x))
|
|
|
|
expected = DataFrame(
|
|
[[768] * 4] * 12 + [[528] * 4],
|
|
index=timedelta_range(start="1s", periods=13, freq="3s"),
|
|
)
|
|
expected.columns = df.columns
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
|
def test_resample_quantile_timedelta(unit):
|
|
# GH: 29485
|
|
dtype = np.dtype(f"m8[{unit}]")
|
|
df = DataFrame(
|
|
{"value": pd.to_timedelta(np.arange(4), unit="s").astype(dtype)},
|
|
index=pd.date_range("20200101", periods=4, tz="UTC"),
|
|
)
|
|
result = df.resample("2D").quantile(0.99)
|
|
expected = DataFrame(
|
|
{
|
|
"value": [
|
|
pd.Timedelta("0 days 00:00:00.990000"),
|
|
pd.Timedelta("0 days 00:00:02.990000"),
|
|
]
|
|
},
|
|
index=pd.date_range("20200101", periods=2, tz="UTC", freq="2D"),
|
|
).astype(dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_closed_right():
|
|
# GH#45414
|
|
idx = pd.Index([pd.Timedelta(seconds=120 + i * 30) for i in range(10)])
|
|
ser = Series(range(10), index=idx)
|
|
result = ser.resample("min", closed="right", label="right").sum()
|
|
expected = Series(
|
|
[0, 3, 7, 11, 15, 9],
|
|
index=pd.TimedeltaIndex(
|
|
[pd.Timedelta(seconds=120 + i * 60) for i in range(6)], freq="min"
|
|
),
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("pyarrow")
|
|
def test_arrow_duration_resample():
|
|
# GH 56371
|
|
idx = pd.Index(timedelta_range("1 day", periods=5), dtype="duration[ns][pyarrow]")
|
|
expected = Series(np.arange(5, dtype=np.float64), index=idx)
|
|
result = expected.resample("1D").mean()
|
|
tm.assert_series_equal(result, expected)
|