AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/pandas/io/feather_format.py
2024-10-02 22:15:59 +04:00

144 lines
4.3 KiB
Python

""" feather-format compat """
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
)
from pandas._config import using_pyarrow_string_dtype
from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
from pandas.util._validators import check_dtype_backend
import pandas as pd
from pandas.core.api import DataFrame
from pandas.core.shared_docs import _shared_docs
from pandas.io._util import arrow_string_types_mapper
from pandas.io.common import get_handle
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Sequence,
)
from pandas._typing import (
DtypeBackend,
FilePath,
ReadBuffer,
StorageOptions,
WriteBuffer,
)
@doc(storage_options=_shared_docs["storage_options"])
def to_feather(
df: DataFrame,
path: FilePath | WriteBuffer[bytes],
storage_options: StorageOptions | None = None,
**kwargs: Any,
) -> None:
"""
Write a DataFrame to the binary Feather format.
Parameters
----------
df : DataFrame
path : str, path object, or file-like object
{storage_options}
**kwargs :
Additional keywords passed to `pyarrow.feather.write_feather`.
"""
import_optional_dependency("pyarrow")
from pyarrow import feather
if not isinstance(df, DataFrame):
raise ValueError("feather only support IO with DataFrames")
with get_handle(
path, "wb", storage_options=storage_options, is_text=False
) as handles:
feather.write_feather(df, handles.handle, **kwargs)
@doc(storage_options=_shared_docs["storage_options"])
def read_feather(
path: FilePath | ReadBuffer[bytes],
columns: Sequence[Hashable] | None = None,
use_threads: bool = True,
storage_options: StorageOptions | None = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame:
"""
Load a feather-format object from the file path.
Parameters
----------
path : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function. The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: ``file://localhost/path/to/table.feather``.
columns : sequence, default None
If not provided, all columns are read.
use_threads : bool, default True
Whether to parallelize reading using multiple threads.
{storage_options}
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
Back-end data type applied to the resultant :class:`DataFrame`
(still experimental). Behaviour is as follows:
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
(default).
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
DataFrame.
.. versionadded:: 2.0
Returns
-------
type of object stored in file
Examples
--------
>>> df = pd.read_feather("path/to/file.feather") # doctest: +SKIP
"""
import_optional_dependency("pyarrow")
from pyarrow import feather
# import utils to register the pyarrow extension types
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401
check_dtype_backend(dtype_backend)
with get_handle(
path, "rb", storage_options=storage_options, is_text=False
) as handles:
if dtype_backend is lib.no_default and not using_pyarrow_string_dtype():
return feather.read_feather(
handles.handle, columns=columns, use_threads=bool(use_threads)
)
pa_table = feather.read_table(
handles.handle, columns=columns, use_threads=bool(use_threads)
)
if dtype_backend == "numpy_nullable":
from pandas.io._util import _arrow_dtype_mapping
return pa_table.to_pandas(types_mapper=_arrow_dtype_mapping().get)
elif dtype_backend == "pyarrow":
return pa_table.to_pandas(types_mapper=pd.ArrowDtype)
elif using_pyarrow_string_dtype():
return pa_table.to_pandas(types_mapper=arrow_string_types_mapper())
else:
raise NotImplementedError