217 lines
7.1 KiB
Python
217 lines
7.1 KiB
Python
from typing import Literal
|
|
|
|
import numpy as np
|
|
|
|
from pandas._typing import npt
|
|
|
|
def group_median_float64(
|
|
out: np.ndarray, # ndarray[float64_t, ndim=2]
|
|
counts: npt.NDArray[np.int64],
|
|
values: np.ndarray, # ndarray[float64_t, ndim=2]
|
|
labels: npt.NDArray[np.int64],
|
|
min_count: int = ..., # Py_ssize_t
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_cumprod(
|
|
out: np.ndarray, # float64_t[:, ::1]
|
|
values: np.ndarray, # const float64_t[:, :]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
is_datetimelike: bool,
|
|
skipna: bool = ...,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_cumsum(
|
|
out: np.ndarray, # int64float_t[:, ::1]
|
|
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
is_datetimelike: bool,
|
|
skipna: bool = ...,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_shift_indexer(
|
|
out: np.ndarray, # int64_t[::1]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
periods: int,
|
|
) -> None: ...
|
|
def group_fillna_indexer(
|
|
out: np.ndarray, # ndarray[intp_t]
|
|
labels: np.ndarray, # ndarray[int64_t]
|
|
sorted_labels: npt.NDArray[np.intp],
|
|
mask: npt.NDArray[np.uint8],
|
|
limit: int, # int64_t
|
|
dropna: bool,
|
|
) -> None: ...
|
|
def group_any_all(
|
|
out: np.ndarray, # uint8_t[::1]
|
|
values: np.ndarray, # const uint8_t[::1]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
mask: np.ndarray, # const uint8_t[::1]
|
|
val_test: Literal["any", "all"],
|
|
skipna: bool,
|
|
result_mask: np.ndarray | None,
|
|
) -> None: ...
|
|
def group_sum(
|
|
out: np.ndarray, # complexfloatingintuint_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
|
|
labels: np.ndarray, # const intp_t[:]
|
|
mask: np.ndarray | None,
|
|
result_mask: np.ndarray | None = ...,
|
|
min_count: int = ...,
|
|
is_datetimelike: bool = ...,
|
|
) -> None: ...
|
|
def group_prod(
|
|
out: np.ndarray, # int64float_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
|
labels: np.ndarray, # const intp_t[:]
|
|
mask: np.ndarray | None,
|
|
result_mask: np.ndarray | None = ...,
|
|
min_count: int = ...,
|
|
) -> None: ...
|
|
def group_var(
|
|
out: np.ndarray, # floating[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[floating, ndim=2]
|
|
labels: np.ndarray, # const intp_t[:]
|
|
min_count: int = ..., # Py_ssize_t
|
|
ddof: int = ..., # int64_t
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
is_datetimelike: bool = ...,
|
|
name: str = ...,
|
|
) -> None: ...
|
|
def group_skew(
|
|
out: np.ndarray, # float64_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[float64_T, ndim=2]
|
|
labels: np.ndarray, # const intp_t[::1]
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
skipna: bool = ...,
|
|
) -> None: ...
|
|
def group_mean(
|
|
out: np.ndarray, # floating[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[floating, ndim=2]
|
|
labels: np.ndarray, # const intp_t[:]
|
|
min_count: int = ..., # Py_ssize_t
|
|
is_datetimelike: bool = ..., # bint
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_ohlc(
|
|
out: np.ndarray, # floatingintuint_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
|
|
labels: np.ndarray, # const intp_t[:]
|
|
min_count: int = ...,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_quantile(
|
|
out: npt.NDArray[np.float64],
|
|
values: np.ndarray, # ndarray[numeric, ndim=1]
|
|
labels: npt.NDArray[np.intp],
|
|
mask: npt.NDArray[np.uint8],
|
|
qs: npt.NDArray[np.float64], # const
|
|
starts: npt.NDArray[np.int64],
|
|
ends: npt.NDArray[np.int64],
|
|
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
|
result_mask: np.ndarray | None,
|
|
is_datetimelike: bool,
|
|
) -> None: ...
|
|
def group_last(
|
|
out: np.ndarray, # rank_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
mask: npt.NDArray[np.bool_] | None,
|
|
result_mask: npt.NDArray[np.bool_] | None = ...,
|
|
min_count: int = ..., # Py_ssize_t
|
|
is_datetimelike: bool = ...,
|
|
skipna: bool = ...,
|
|
) -> None: ...
|
|
def group_nth(
|
|
out: np.ndarray, # rank_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
mask: npt.NDArray[np.bool_] | None,
|
|
result_mask: npt.NDArray[np.bool_] | None = ...,
|
|
min_count: int = ..., # int64_t
|
|
rank: int = ..., # int64_t
|
|
is_datetimelike: bool = ...,
|
|
skipna: bool = ...,
|
|
) -> None: ...
|
|
def group_rank(
|
|
out: np.ndarray, # float64_t[:, ::1]
|
|
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
is_datetimelike: bool,
|
|
ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
|
|
ascending: bool = ...,
|
|
pct: bool = ...,
|
|
na_option: Literal["keep", "top", "bottom"] = ...,
|
|
mask: npt.NDArray[np.bool_] | None = ...,
|
|
) -> None: ...
|
|
def group_max(
|
|
out: np.ndarray, # groupby_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
min_count: int = ...,
|
|
is_datetimelike: bool = ...,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_min(
|
|
out: np.ndarray, # groupby_t[:, ::1]
|
|
counts: np.ndarray, # int64_t[::1]
|
|
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
min_count: int = ...,
|
|
is_datetimelike: bool = ...,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_idxmin_idxmax(
|
|
out: npt.NDArray[np.intp],
|
|
counts: npt.NDArray[np.int64],
|
|
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
|
labels: npt.NDArray[np.intp],
|
|
min_count: int = ...,
|
|
is_datetimelike: bool = ...,
|
|
mask: np.ndarray | None = ...,
|
|
name: str = ...,
|
|
skipna: bool = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
) -> None: ...
|
|
def group_cummin(
|
|
out: np.ndarray, # groupby_t[:, ::1]
|
|
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
is_datetimelike: bool,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
skipna: bool = ...,
|
|
) -> None: ...
|
|
def group_cummax(
|
|
out: np.ndarray, # groupby_t[:, ::1]
|
|
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
|
labels: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
is_datetimelike: bool,
|
|
mask: np.ndarray | None = ...,
|
|
result_mask: np.ndarray | None = ...,
|
|
skipna: bool = ...,
|
|
) -> None: ...
|