AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/matplotlib/tests/test_patches.py
2024-10-02 22:15:59 +04:00

963 lines
31 KiB
Python

"""
Tests specific to the patches module.
"""
import platform
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_equal
import pytest
import matplotlib as mpl
from matplotlib.patches import (Annulus, Ellipse, Patch, Polygon, Rectangle,
FancyArrowPatch, FancyArrow, BoxStyle, Arc)
from matplotlib.testing.decorators import image_comparison, check_figures_equal
from matplotlib.transforms import Bbox
import matplotlib.pyplot as plt
from matplotlib import (
collections as mcollections, colors as mcolors, patches as mpatches,
path as mpath, transforms as mtransforms, rcParams)
def test_Polygon_close():
#: GitHub issue #1018 identified a bug in the Polygon handling
#: of the closed attribute; the path was not getting closed
#: when set_xy was used to set the vertices.
# open set of vertices:
xy = [[0, 0], [0, 1], [1, 1]]
# closed set:
xyclosed = xy + [[0, 0]]
# start with open path and close it:
p = Polygon(xy, closed=True)
assert p.get_closed()
assert_array_equal(p.get_xy(), xyclosed)
p.set_xy(xy)
assert_array_equal(p.get_xy(), xyclosed)
# start with closed path and open it:
p = Polygon(xyclosed, closed=False)
assert_array_equal(p.get_xy(), xy)
p.set_xy(xyclosed)
assert_array_equal(p.get_xy(), xy)
# start with open path and leave it open:
p = Polygon(xy, closed=False)
assert not p.get_closed()
assert_array_equal(p.get_xy(), xy)
p.set_xy(xy)
assert_array_equal(p.get_xy(), xy)
# start with closed path and leave it closed:
p = Polygon(xyclosed, closed=True)
assert_array_equal(p.get_xy(), xyclosed)
p.set_xy(xyclosed)
assert_array_equal(p.get_xy(), xyclosed)
def test_corner_center():
loc = [10, 20]
width = 1
height = 2
# Rectangle
# No rotation
corners = ((10, 20), (11, 20), (11, 22), (10, 22))
rect = Rectangle(loc, width, height)
assert_array_equal(rect.get_corners(), corners)
assert_array_equal(rect.get_center(), (10.5, 21))
# 90 deg rotation
corners_rot = ((10, 20), (10, 21), (8, 21), (8, 20))
rect.set_angle(90)
assert_array_equal(rect.get_corners(), corners_rot)
assert_array_equal(rect.get_center(), (9, 20.5))
# Rotation not a multiple of 90 deg
theta = 33
t = mtransforms.Affine2D().rotate_around(*loc, np.deg2rad(theta))
corners_rot = t.transform(corners)
rect.set_angle(theta)
assert_almost_equal(rect.get_corners(), corners_rot)
# Ellipse
loc = [loc[0] + width / 2,
loc[1] + height / 2]
ellipse = Ellipse(loc, width, height)
# No rotation
assert_array_equal(ellipse.get_corners(), corners)
# 90 deg rotation
corners_rot = ((11.5, 20.5), (11.5, 21.5), (9.5, 21.5), (9.5, 20.5))
ellipse.set_angle(90)
assert_array_equal(ellipse.get_corners(), corners_rot)
# Rotation shouldn't change ellipse center
assert_array_equal(ellipse.get_center(), loc)
# Rotation not a multiple of 90 deg
theta = 33
t = mtransforms.Affine2D().rotate_around(*loc, np.deg2rad(theta))
corners_rot = t.transform(corners)
ellipse.set_angle(theta)
assert_almost_equal(ellipse.get_corners(), corners_rot)
def test_ellipse_vertices():
# expect 0 for 0 ellipse width, height
ellipse = Ellipse(xy=(0, 0), width=0, height=0, angle=0)
assert_almost_equal(
ellipse.get_vertices(),
[(0.0, 0.0), (0.0, 0.0)],
)
assert_almost_equal(
ellipse.get_co_vertices(),
[(0.0, 0.0), (0.0, 0.0)],
)
ellipse = Ellipse(xy=(0, 0), width=2, height=1, angle=30)
assert_almost_equal(
ellipse.get_vertices(),
[
(
ellipse.center[0] + ellipse.width / 4 * np.sqrt(3),
ellipse.center[1] + ellipse.width / 4,
),
(
ellipse.center[0] - ellipse.width / 4 * np.sqrt(3),
ellipse.center[1] - ellipse.width / 4,
),
],
)
assert_almost_equal(
ellipse.get_co_vertices(),
[
(
ellipse.center[0] - ellipse.height / 4,
ellipse.center[1] + ellipse.height / 4 * np.sqrt(3),
),
(
ellipse.center[0] + ellipse.height / 4,
ellipse.center[1] - ellipse.height / 4 * np.sqrt(3),
),
],
)
v1, v2 = np.array(ellipse.get_vertices())
np.testing.assert_almost_equal((v1 + v2) / 2, ellipse.center)
v1, v2 = np.array(ellipse.get_co_vertices())
np.testing.assert_almost_equal((v1 + v2) / 2, ellipse.center)
ellipse = Ellipse(xy=(2.252, -10.859), width=2.265, height=1.98, angle=68.78)
v1, v2 = np.array(ellipse.get_vertices())
np.testing.assert_almost_equal((v1 + v2) / 2, ellipse.center)
v1, v2 = np.array(ellipse.get_co_vertices())
np.testing.assert_almost_equal((v1 + v2) / 2, ellipse.center)
def test_rotate_rect():
loc = np.asarray([1.0, 2.0])
width = 2
height = 3
angle = 30.0
# A rotated rectangle
rect1 = Rectangle(loc, width, height, angle=angle)
# A non-rotated rectangle
rect2 = Rectangle(loc, width, height)
# Set up an explicit rotation matrix (in radians)
angle_rad = np.pi * angle / 180.0
rotation_matrix = np.array([[np.cos(angle_rad), -np.sin(angle_rad)],
[np.sin(angle_rad), np.cos(angle_rad)]])
# Translate to origin, rotate each vertex, and then translate back
new_verts = np.inner(rotation_matrix, rect2.get_verts() - loc).T + loc
# They should be the same
assert_almost_equal(rect1.get_verts(), new_verts)
@check_figures_equal(extensions=['png'])
def test_rotate_rect_draw(fig_test, fig_ref):
ax_test = fig_test.add_subplot()
ax_ref = fig_ref.add_subplot()
loc = (0, 0)
width, height = (1, 1)
angle = 30
rect_ref = Rectangle(loc, width, height, angle=angle)
ax_ref.add_patch(rect_ref)
assert rect_ref.get_angle() == angle
# Check that when the angle is updated after adding to an Axes, that the
# patch is marked stale and redrawn in the correct location
rect_test = Rectangle(loc, width, height)
assert rect_test.get_angle() == 0
ax_test.add_patch(rect_test)
rect_test.set_angle(angle)
assert rect_test.get_angle() == angle
@check_figures_equal(extensions=['png'])
def test_dash_offset_patch_draw(fig_test, fig_ref):
ax_test = fig_test.add_subplot()
ax_ref = fig_ref.add_subplot()
loc = (0.1, 0.1)
width, height = (0.8, 0.8)
rect_ref = Rectangle(loc, width, height, linewidth=3, edgecolor='b',
linestyle=(0, [6, 6]))
# fill the line gaps using a linestyle (0, [0, 6, 6, 0]), which is
# equivalent to (6, [6, 6]) but has 0 dash offset
rect_ref2 = Rectangle(loc, width, height, linewidth=3, edgecolor='r',
linestyle=(0, [0, 6, 6, 0]))
assert rect_ref.get_linestyle() == (0, [6, 6])
assert rect_ref2.get_linestyle() == (0, [0, 6, 6, 0])
ax_ref.add_patch(rect_ref)
ax_ref.add_patch(rect_ref2)
# Check that the dash offset of the rect is the same if we pass it in the
# init method and if we create two rects with appropriate onoff sequence
# of linestyle.
rect_test = Rectangle(loc, width, height, linewidth=3, edgecolor='b',
linestyle=(0, [6, 6]))
rect_test2 = Rectangle(loc, width, height, linewidth=3, edgecolor='r',
linestyle=(6, [6, 6]))
assert rect_test.get_linestyle() == (0, [6, 6])
assert rect_test2.get_linestyle() == (6, [6, 6])
ax_test.add_patch(rect_test)
ax_test.add_patch(rect_test2)
def test_negative_rect():
# These two rectangles have the same vertices, but starting from a
# different point. (We also drop the last vertex, which is a duplicate.)
pos_vertices = Rectangle((-3, -2), 3, 2).get_verts()[:-1]
neg_vertices = Rectangle((0, 0), -3, -2).get_verts()[:-1]
assert_array_equal(np.roll(neg_vertices, 2, 0), pos_vertices)
@image_comparison(['clip_to_bbox'])
def test_clip_to_bbox():
fig, ax = plt.subplots()
ax.set_xlim([-18, 20])
ax.set_ylim([-150, 100])
path = mpath.Path.unit_regular_star(8).deepcopy()
path.vertices *= [10, 100]
path.vertices -= [5, 25]
path2 = mpath.Path.unit_circle().deepcopy()
path2.vertices *= [10, 100]
path2.vertices += [10, -25]
combined = mpath.Path.make_compound_path(path, path2)
patch = mpatches.PathPatch(
combined, alpha=0.5, facecolor='coral', edgecolor='none')
ax.add_patch(patch)
bbox = mtransforms.Bbox([[-12, -77.5], [50, -110]])
result_path = combined.clip_to_bbox(bbox)
result_patch = mpatches.PathPatch(
result_path, alpha=0.5, facecolor='green', lw=4, edgecolor='black')
ax.add_patch(result_patch)
@image_comparison(['patch_alpha_coloring'], remove_text=True)
def test_patch_alpha_coloring():
"""
Test checks that the patch and collection are rendered with the specified
alpha values in their facecolor and edgecolor.
"""
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
col = mcollections.PathCollection([cut_star2],
linewidth=5, linestyles='dashdot',
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_collection(col)
patch = mpatches.PathPatch(cut_star1,
linewidth=5, linestyle='dashdot',
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_patch(patch)
ax.set_xlim(-1, 2)
ax.set_ylim(-1, 2)
@image_comparison(['patch_alpha_override'], remove_text=True)
def test_patch_alpha_override():
#: Test checks that specifying an alpha attribute for a patch or
#: collection will override any alpha component of the facecolor
#: or edgecolor.
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
col = mcollections.PathCollection([cut_star2],
linewidth=5, linestyles='dashdot',
alpha=0.25,
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_collection(col)
patch = mpatches.PathPatch(cut_star1,
linewidth=5, linestyle='dashdot',
alpha=0.25,
facecolor=(1, 0, 0, 0.5),
edgecolor=(0, 0, 1, 0.75))
ax.add_patch(patch)
ax.set_xlim(-1, 2)
ax.set_ylim(-1, 2)
@mpl.style.context('default')
def test_patch_color_none():
# Make sure the alpha kwarg does not override 'none' facecolor.
# Addresses issue #7478.
c = plt.Circle((0, 0), 1, facecolor='none', alpha=1)
assert c.get_facecolor()[0] == 0
@image_comparison(['patch_custom_linestyle'], remove_text=True)
def test_patch_custom_linestyle():
#: A test to check that patches and collections accept custom dash
#: patterns as linestyle and that they display correctly.
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
cut_star1 = mpath.Path(verts, codes)
cut_star2 = mpath.Path(verts + 1, codes)
ax = plt.axes()
col = mcollections.PathCollection(
[cut_star2],
linewidth=5, linestyles=[(0, (5, 7, 10, 7))],
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
ax.add_collection(col)
patch = mpatches.PathPatch(
cut_star1,
linewidth=5, linestyle=(0, (5, 7, 10, 7)),
facecolor=(1, 0, 0), edgecolor=(0, 0, 1))
ax.add_patch(patch)
ax.set_xlim(-1, 2)
ax.set_ylim(-1, 2)
def test_patch_linestyle_accents():
#: Test if linestyle can also be specified with short mnemonics like "--"
#: c.f. GitHub issue #2136
star = mpath.Path.unit_regular_star(6)
circle = mpath.Path.unit_circle()
# concatenate the star with an internal cutout of the circle
verts = np.concatenate([circle.vertices, star.vertices[::-1]])
codes = np.concatenate([circle.codes, star.codes])
linestyles = ["-", "--", "-.", ":",
"solid", "dashed", "dashdot", "dotted"]
fig, ax = plt.subplots()
for i, ls in enumerate(linestyles):
star = mpath.Path(verts + i, codes)
patch = mpatches.PathPatch(star,
linewidth=3, linestyle=ls,
facecolor=(1, 0, 0),
edgecolor=(0, 0, 1))
ax.add_patch(patch)
ax.set_xlim([-1, i + 1])
ax.set_ylim([-1, i + 1])
fig.canvas.draw()
@check_figures_equal(extensions=['png'])
def test_patch_linestyle_none(fig_test, fig_ref):
circle = mpath.Path.unit_circle()
ax_test = fig_test.add_subplot()
ax_ref = fig_ref.add_subplot()
for i, ls in enumerate(['none', 'None', ' ', '']):
path = mpath.Path(circle.vertices + i, circle.codes)
patch = mpatches.PathPatch(path,
linewidth=3, linestyle=ls,
facecolor=(1, 0, 0),
edgecolor=(0, 0, 1))
ax_test.add_patch(patch)
patch = mpatches.PathPatch(path,
linewidth=3, linestyle='-',
facecolor=(1, 0, 0),
edgecolor='none')
ax_ref.add_patch(patch)
ax_test.set_xlim([-1, i + 1])
ax_test.set_ylim([-1, i + 1])
ax_ref.set_xlim([-1, i + 1])
ax_ref.set_ylim([-1, i + 1])
def test_wedge_movement():
param_dict = {'center': ((0, 0), (1, 1), 'set_center'),
'r': (5, 8, 'set_radius'),
'width': (2, 3, 'set_width'),
'theta1': (0, 30, 'set_theta1'),
'theta2': (45, 50, 'set_theta2')}
init_args = {k: v[0] for k, v in param_dict.items()}
w = mpatches.Wedge(**init_args)
for attr, (old_v, new_v, func) in param_dict.items():
assert getattr(w, attr) == old_v
getattr(w, func)(new_v)
assert getattr(w, attr) == new_v
@image_comparison(['wedge_range'], remove_text=True,
tol=0.009 if platform.machine() == 'arm64' else 0)
def test_wedge_range():
ax = plt.axes()
t1 = 2.313869244286224
args = [[52.31386924, 232.31386924],
[52.313869244286224, 232.31386924428622],
[t1, t1 + 180.0],
[0, 360],
[90, 90 + 360],
[-180, 180],
[0, 380],
[45, 46],
[46, 45]]
for i, (theta1, theta2) in enumerate(args):
x = i % 3
y = i // 3
wedge = mpatches.Wedge((x * 3, y * 3), 1, theta1, theta2,
facecolor='none', edgecolor='k', lw=3)
ax.add_artist(wedge)
ax.set_xlim(-2, 8)
ax.set_ylim(-2, 9)
def test_patch_str():
"""
Check that patches have nice and working `str` representation.
Note that the logic is that `__str__` is defined such that:
str(eval(str(p))) == str(p)
"""
p = mpatches.Circle(xy=(1, 2), radius=3)
assert str(p) == 'Circle(xy=(1, 2), radius=3)'
p = mpatches.Ellipse(xy=(1, 2), width=3, height=4, angle=5)
assert str(p) == 'Ellipse(xy=(1, 2), width=3, height=4, angle=5)'
p = mpatches.Rectangle(xy=(1, 2), width=3, height=4, angle=5)
assert str(p) == 'Rectangle(xy=(1, 2), width=3, height=4, angle=5)'
p = mpatches.Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)
assert str(p) == 'Wedge(center=(1, 2), r=3, theta1=4, theta2=5, width=6)'
p = mpatches.Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)
expected = 'Arc(xy=(1, 2), width=3, height=4, angle=5, theta1=6, theta2=7)'
assert str(p) == expected
p = mpatches.Annulus(xy=(1, 2), r=(3, 4), width=1, angle=2)
expected = "Annulus(xy=(1, 2), r=(3, 4), width=1, angle=2)"
assert str(p) == expected
p = mpatches.RegularPolygon((1, 2), 20, radius=5)
assert str(p) == "RegularPolygon((1, 2), 20, radius=5, orientation=0)"
p = mpatches.CirclePolygon(xy=(1, 2), radius=5, resolution=20)
assert str(p) == "CirclePolygon((1, 2), radius=5, resolution=20)"
p = mpatches.FancyBboxPatch((1, 2), width=3, height=4)
assert str(p) == "FancyBboxPatch((1, 2), width=3, height=4)"
# Further nice __str__ which cannot be `eval`uated:
path = mpath.Path([(1, 2), (2, 2), (1, 2)], closed=True)
p = mpatches.PathPatch(path)
assert str(p) == "PathPatch3((1, 2) ...)"
p = mpatches.Polygon(np.empty((0, 2)))
assert str(p) == "Polygon0()"
data = [[1, 2], [2, 2], [1, 2]]
p = mpatches.Polygon(data)
assert str(p) == "Polygon3((1, 2) ...)"
p = mpatches.FancyArrowPatch(path=path)
assert str(p)[:27] == "FancyArrowPatch(Path(array("
p = mpatches.FancyArrowPatch((1, 2), (3, 4))
assert str(p) == "FancyArrowPatch((1, 2)->(3, 4))"
p = mpatches.ConnectionPatch((1, 2), (3, 4), 'data')
assert str(p) == "ConnectionPatch((1, 2), (3, 4))"
s = mpatches.Shadow(p, 1, 1)
assert str(s) == "Shadow(ConnectionPatch((1, 2), (3, 4)))"
# Not testing Arrow, FancyArrow here
# because they seem to exist only for historical reasons.
@image_comparison(['multi_color_hatch'], remove_text=True, style='default')
def test_multi_color_hatch():
fig, ax = plt.subplots()
rects = ax.bar(range(5), range(1, 6))
for i, rect in enumerate(rects):
rect.set_facecolor('none')
rect.set_edgecolor(f'C{i}')
rect.set_hatch('/')
ax.autoscale_view()
ax.autoscale(False)
for i in range(5):
with mpl.style.context({'hatch.color': f'C{i}'}):
r = Rectangle((i - .8 / 2, 5), .8, 1, hatch='//', fc='none')
ax.add_patch(r)
@image_comparison(['units_rectangle.png'])
def test_units_rectangle():
import matplotlib.testing.jpl_units as U
U.register()
p = mpatches.Rectangle((5*U.km, 6*U.km), 1*U.km, 2*U.km)
fig, ax = plt.subplots()
ax.add_patch(p)
ax.set_xlim([4*U.km, 7*U.km])
ax.set_ylim([5*U.km, 9*U.km])
@image_comparison(['connection_patch.png'], style='mpl20', remove_text=True,
tol=0.024 if platform.machine() == 'arm64' else 0)
def test_connection_patch():
fig, (ax1, ax2) = plt.subplots(1, 2)
con = mpatches.ConnectionPatch(xyA=(0.1, 0.1), xyB=(0.9, 0.9),
coordsA='data', coordsB='data',
axesA=ax2, axesB=ax1,
arrowstyle="->")
ax2.add_artist(con)
xyA = (0.6, 1.0) # in axes coordinates
xyB = (0.0, 0.2) # x in axes coordinates, y in data coordinates
coordsA = "axes fraction"
coordsB = ax2.get_yaxis_transform()
con = mpatches.ConnectionPatch(xyA=xyA, xyB=xyB, coordsA=coordsA,
coordsB=coordsB, arrowstyle="-")
ax2.add_artist(con)
@check_figures_equal(extensions=["png"])
def test_connection_patch_fig(fig_test, fig_ref):
# Test that connection patch can be added as figure artist, and that figure
# pixels count negative values from the top right corner (this API may be
# changed in the future).
ax1, ax2 = fig_test.subplots(1, 2)
con = mpatches.ConnectionPatch(
xyA=(.3, .2), coordsA="data", axesA=ax1,
xyB=(-30, -20), coordsB="figure pixels",
arrowstyle="->", shrinkB=5)
fig_test.add_artist(con)
ax1, ax2 = fig_ref.subplots(1, 2)
bb = fig_ref.bbox
# Necessary so that pixel counts match on both sides.
plt.rcParams["savefig.dpi"] = plt.rcParams["figure.dpi"]
con = mpatches.ConnectionPatch(
xyA=(.3, .2), coordsA="data", axesA=ax1,
xyB=(bb.width - 30, bb.height - 20), coordsB="figure pixels",
arrowstyle="->", shrinkB=5)
fig_ref.add_artist(con)
def test_datetime_rectangle():
# Check that creating a rectangle with timedeltas doesn't fail
from datetime import datetime, timedelta
start = datetime(2017, 1, 1, 0, 0, 0)
delta = timedelta(seconds=16)
patch = mpatches.Rectangle((start, 0), delta, 1)
fig, ax = plt.subplots()
ax.add_patch(patch)
def test_datetime_datetime_fails():
from datetime import datetime
start = datetime(2017, 1, 1, 0, 0, 0)
dt_delta = datetime(1970, 1, 5) # Will be 5 days if units are done wrong.
with pytest.raises(TypeError):
mpatches.Rectangle((start, 0), dt_delta, 1)
with pytest.raises(TypeError):
mpatches.Rectangle((0, start), 1, dt_delta)
def test_contains_point():
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0)
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
path = ell.get_path()
transform = ell.get_transform()
radius = ell._process_radius(None)
expected = np.array([path.contains_point(point,
transform,
radius) for point in points])
result = np.array([ell.contains_point(point) for point in points])
assert np.all(result == expected)
def test_contains_points():
ell = mpatches.Ellipse((0.5, 0.5), 0.5, 1.0)
points = [(0.0, 0.5), (0.2, 0.5), (0.25, 0.5), (0.5, 0.5)]
path = ell.get_path()
transform = ell.get_transform()
radius = ell._process_radius(None)
expected = path.contains_points(points, transform, radius)
result = ell.contains_points(points)
assert np.all(result == expected)
# Currently fails with pdf/svg, probably because some parts assume a dpi of 72.
@check_figures_equal(extensions=["png"])
def test_shadow(fig_test, fig_ref):
xy = np.array([.2, .3])
dxy = np.array([.1, .2])
# We need to work around the nonsensical (dpi-dependent) interpretation of
# offsets by the Shadow class...
plt.rcParams["savefig.dpi"] = "figure"
# Test image.
a1 = fig_test.subplots()
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
shadow = mpatches.Shadow(rect, ox=dxy[0], oy=dxy[1])
a1.add_patch(rect)
a1.add_patch(shadow)
# Reference image.
a2 = fig_ref.subplots()
rect = mpatches.Rectangle(xy=xy, width=.5, height=.5)
shadow = mpatches.Rectangle(
xy=xy + fig_ref.dpi / 72 * dxy, width=.5, height=.5,
fc=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
ec=np.asarray(mcolors.to_rgb(rect.get_facecolor())) * .3,
alpha=.5)
a2.add_patch(shadow)
a2.add_patch(rect)
def test_fancyarrow_units():
from datetime import datetime
# Smoke test to check that FancyArrowPatch works with units
dtime = datetime(2000, 1, 1)
fig, ax = plt.subplots()
arrow = FancyArrowPatch((0, dtime), (0.01, dtime))
def test_fancyarrow_setdata():
fig, ax = plt.subplots()
arrow = ax.arrow(0, 0, 10, 10, head_length=5, head_width=1, width=.5)
expected1 = np.array(
[[13.54, 13.54],
[10.35, 9.65],
[10.18, 9.82],
[0.18, -0.18],
[-0.18, 0.18],
[9.82, 10.18],
[9.65, 10.35],
[13.54, 13.54]]
)
assert np.allclose(expected1, np.round(arrow.verts, 2))
expected2 = np.array(
[[16.71, 16.71],
[16.71, 15.29],
[16.71, 15.29],
[1.71, 0.29],
[0.29, 1.71],
[15.29, 16.71],
[15.29, 16.71],
[16.71, 16.71]]
)
arrow.set_data(
x=1, y=1, dx=15, dy=15, width=2, head_width=2, head_length=1
)
assert np.allclose(expected2, np.round(arrow.verts, 2))
@image_comparison(["large_arc.svg"], style="mpl20")
def test_large_arc():
fig, (ax1, ax2) = plt.subplots(1, 2)
x = 210
y = -2115
diameter = 4261
for ax in [ax1, ax2]:
a = Arc((x, y), diameter, diameter, lw=2, color='k')
ax.add_patch(a)
ax.set_axis_off()
ax.set_aspect('equal')
# force the high accuracy case
ax1.set_xlim(7, 8)
ax1.set_ylim(5, 6)
# force the low accuracy case
ax2.set_xlim(-25000, 18000)
ax2.set_ylim(-20000, 6600)
@image_comparison(["all_quadrants_arcs.svg"], style="mpl20")
def test_rotated_arcs():
fig, ax_arr = plt.subplots(2, 2, squeeze=False, figsize=(10, 10))
scale = 10_000_000
diag_centers = ((-1, -1), (-1, 1), (1, 1), (1, -1))
on_axis_centers = ((0, 1), (1, 0), (0, -1), (-1, 0))
skews = ((2, 2), (2, 1/10), (2, 1/100), (2, 1/1000))
for ax, (sx, sy) in zip(ax_arr.ravel(), skews):
k = 0
for prescale, centers in zip((1 - .0001, (1 - .0001) / np.sqrt(2)),
(on_axis_centers, diag_centers)):
for j, (x_sign, y_sign) in enumerate(centers, start=k):
a = Arc(
(x_sign * scale * prescale,
y_sign * scale * prescale),
scale * sx,
scale * sy,
lw=4,
color=f"C{j}",
zorder=1 + j,
angle=np.rad2deg(np.arctan2(y_sign, x_sign)) % 360,
label=f'big {j}',
gid=f'big {j}'
)
ax.add_patch(a)
k = j+1
ax.set_xlim(-scale / 4000, scale / 4000)
ax.set_ylim(-scale / 4000, scale / 4000)
ax.axhline(0, color="k")
ax.axvline(0, color="k")
ax.set_axis_off()
ax.set_aspect("equal")
def test_fancyarrow_shape_error():
with pytest.raises(ValueError, match="Got unknown shape: 'foo'"):
FancyArrow(0, 0, 0.2, 0.2, shape='foo')
@pytest.mark.parametrize('fmt, match', (
("foo", "Unknown style: 'foo'"),
("Round,foo", "Incorrect style argument: 'Round,foo'"),
))
def test_boxstyle_errors(fmt, match):
with pytest.raises(ValueError, match=match):
BoxStyle(fmt)
@image_comparison(baseline_images=['annulus'], extensions=['png'])
def test_annulus():
fig, ax = plt.subplots()
cir = Annulus((0.5, 0.5), 0.2, 0.05, fc='g') # circular annulus
ell = Annulus((0.5, 0.5), (0.5, 0.3), 0.1, 45, # elliptical
fc='m', ec='b', alpha=0.5, hatch='xxx')
ax.add_patch(cir)
ax.add_patch(ell)
ax.set_aspect('equal')
@image_comparison(baseline_images=['annulus'], extensions=['png'])
def test_annulus_setters():
fig, ax = plt.subplots()
cir = Annulus((0., 0.), 0.2, 0.01, fc='g') # circular annulus
ell = Annulus((0., 0.), (1, 2), 0.1, 0, # elliptical
fc='m', ec='b', alpha=0.5, hatch='xxx')
ax.add_patch(cir)
ax.add_patch(ell)
ax.set_aspect('equal')
cir.center = (0.5, 0.5)
cir.radii = 0.2
cir.width = 0.05
ell.center = (0.5, 0.5)
ell.radii = (0.5, 0.3)
ell.width = 0.1
ell.angle = 45
@image_comparison(baseline_images=['annulus'], extensions=['png'])
def test_annulus_setters2():
fig, ax = plt.subplots()
cir = Annulus((0., 0.), 0.2, 0.01, fc='g') # circular annulus
ell = Annulus((0., 0.), (1, 2), 0.1, 0, # elliptical
fc='m', ec='b', alpha=0.5, hatch='xxx')
ax.add_patch(cir)
ax.add_patch(ell)
ax.set_aspect('equal')
cir.center = (0.5, 0.5)
cir.set_semimajor(0.2)
cir.set_semiminor(0.2)
assert cir.radii == (0.2, 0.2)
cir.width = 0.05
ell.center = (0.5, 0.5)
ell.set_semimajor(0.5)
ell.set_semiminor(0.3)
assert ell.radii == (0.5, 0.3)
ell.width = 0.1
ell.angle = 45
def test_degenerate_polygon():
point = [0, 0]
correct_extents = Bbox([point, point]).extents
assert np.all(Polygon([point]).get_extents().extents == correct_extents)
@pytest.mark.parametrize('kwarg', ('edgecolor', 'facecolor'))
def test_color_override_warning(kwarg):
with pytest.warns(UserWarning,
match="Setting the 'color' property will override "
"the edgecolor or facecolor properties."):
Patch(color='black', **{kwarg: 'black'})
def test_empty_verts():
poly = Polygon(np.zeros((0, 2)))
assert poly.get_verts() == []
def test_default_antialiased():
patch = Patch()
patch.set_antialiased(not rcParams['patch.antialiased'])
assert patch.get_antialiased() == (not rcParams['patch.antialiased'])
# Check that None resets the state
patch.set_antialiased(None)
assert patch.get_antialiased() == rcParams['patch.antialiased']
def test_default_linestyle():
patch = Patch()
patch.set_linestyle('--')
patch.set_linestyle(None)
assert patch.get_linestyle() == 'solid'
def test_default_capstyle():
patch = Patch()
assert patch.get_capstyle() == 'butt'
def test_default_joinstyle():
patch = Patch()
assert patch.get_joinstyle() == 'miter'
@image_comparison(["autoscale_arc"], extensions=['png', 'svg'],
style="mpl20", remove_text=True)
def test_autoscale_arc():
fig, axs = plt.subplots(1, 3, figsize=(4, 1))
arc_lists = (
[Arc((0, 0), 1, 1, theta1=0, theta2=90)],
[Arc((0.5, 0.5), 1.5, 0.5, theta1=10, theta2=20)],
[Arc((0.5, 0.5), 1.5, 0.5, theta1=10, theta2=20),
Arc((0.5, 0.5), 2.5, 0.5, theta1=110, theta2=120),
Arc((0.5, 0.5), 3.5, 0.5, theta1=210, theta2=220),
Arc((0.5, 0.5), 4.5, 0.5, theta1=310, theta2=320)])
for ax, arcs in zip(axs, arc_lists):
for arc in arcs:
ax.add_patch(arc)
ax.autoscale()
@check_figures_equal(extensions=["png", 'svg', 'pdf', 'eps'])
def test_arc_in_collection(fig_test, fig_ref):
arc1 = Arc([.5, .5], .5, 1, theta1=0, theta2=60, angle=20)
arc2 = Arc([.5, .5], .5, 1, theta1=0, theta2=60, angle=20)
col = mcollections.PatchCollection(patches=[arc2], facecolors='none',
edgecolors='k')
fig_ref.subplots().add_patch(arc1)
fig_test.subplots().add_collection(col)
@check_figures_equal(extensions=["png", 'svg', 'pdf', 'eps'])
def test_modifying_arc(fig_test, fig_ref):
arc1 = Arc([.5, .5], .5, 1, theta1=0, theta2=60, angle=20)
arc2 = Arc([.5, .5], 1.5, 1, theta1=0, theta2=60, angle=10)
fig_ref.subplots().add_patch(arc1)
fig_test.subplots().add_patch(arc2)
arc2.set_width(.5)
arc2.set_angle(20)
def test_arrow_set_data():
fig, ax = plt.subplots()
arrow = mpl.patches.Arrow(2, 0, 0, 10)
expected1 = np.array(
[[1.9, 0.],
[2.1, -0.],
[2.1, 8.],
[2.3, 8.],
[2., 10.],
[1.7, 8.],
[1.9, 8.],
[1.9, 0.]]
)
assert np.allclose(expected1, np.round(arrow.get_verts(), 2))
expected2 = np.array(
[[0.39, 0.04],
[0.61, -0.04],
[3.01, 6.36],
[3.24, 6.27],
[3.5, 8.],
[2.56, 6.53],
[2.79, 6.44],
[0.39, 0.04]]
)
arrow.set_data(x=.5, dx=3, dy=8, width=1.2)
assert np.allclose(expected2, np.round(arrow.get_verts(), 2))