AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/matplotlib/tests/test_cbook.py
2024-10-02 22:15:59 +04:00

992 lines
31 KiB
Python

from __future__ import annotations
import sys
import itertools
import pickle
from typing import Any
from unittest.mock import patch, Mock
from datetime import datetime, date, timedelta
import numpy as np
from numpy.testing import (assert_array_equal, assert_approx_equal,
assert_array_almost_equal)
import pytest
from matplotlib import _api, cbook
import matplotlib.colors as mcolors
from matplotlib.cbook import delete_masked_points, strip_math
from types import ModuleType
class Test_delete_masked_points:
def test_bad_first_arg(self):
with pytest.raises(ValueError):
delete_masked_points('a string', np.arange(1.0, 7.0))
def test_string_seq(self):
a1 = ['a', 'b', 'c', 'd', 'e', 'f']
a2 = [1, 2, 3, np.nan, np.nan, 6]
result1, result2 = delete_masked_points(a1, a2)
ind = [0, 1, 2, 5]
assert_array_equal(result1, np.array(a1)[ind])
assert_array_equal(result2, np.array(a2)[ind])
def test_datetime(self):
dates = [datetime(2008, 1, 1), datetime(2008, 1, 2),
datetime(2008, 1, 3), datetime(2008, 1, 4),
datetime(2008, 1, 5), datetime(2008, 1, 6)]
a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
mask=[False, False, True, True, False, False])
actual = delete_masked_points(dates, a_masked)
ind = [0, 1, 5]
assert_array_equal(actual[0], np.array(dates)[ind])
assert_array_equal(actual[1], a_masked[ind].compressed())
def test_rgba(self):
a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
mask=[False, False, True, True, False, False])
a_rgba = mcolors.to_rgba_array(['r', 'g', 'b', 'c', 'm', 'y'])
actual = delete_masked_points(a_masked, a_rgba)
ind = [0, 1, 5]
assert_array_equal(actual[0], a_masked[ind].compressed())
assert_array_equal(actual[1], a_rgba[ind])
class Test_boxplot_stats:
def setup_method(self):
np.random.seed(937)
self.nrows = 37
self.ncols = 4
self.data = np.random.lognormal(size=(self.nrows, self.ncols),
mean=1.5, sigma=1.75)
self.known_keys = sorted([
'mean', 'med', 'q1', 'q3', 'iqr',
'cilo', 'cihi', 'whislo', 'whishi',
'fliers', 'label'
])
self.std_results = cbook.boxplot_stats(self.data)
self.known_nonbootstrapped_res = {
'cihi': 6.8161283264444847,
'cilo': -0.1489815330368689,
'iqr': 13.492709959447094,
'mean': 13.00447442387868,
'med': 3.3335733967038079,
'fliers': np.array([
92.55467075, 87.03819018, 42.23204914, 39.29390996
]),
'q1': 1.3597529879465153,
'q3': 14.85246294739361,
'whishi': 27.899688243699629,
'whislo': 0.042143774965502923
}
self.known_bootstrapped_ci = {
'cihi': 8.939577523357828,
'cilo': 1.8692703958676578,
}
self.known_whis3_res = {
'whishi': 42.232049135969874,
'whislo': 0.042143774965502923,
'fliers': np.array([92.55467075, 87.03819018]),
}
self.known_res_percentiles = {
'whislo': 0.1933685896907924,
'whishi': 42.232049135969874
}
self.known_res_range = {
'whislo': 0.042143774965502923,
'whishi': 92.554670752188699
}
def test_form_main_list(self):
assert isinstance(self.std_results, list)
def test_form_each_dict(self):
for res in self.std_results:
assert isinstance(res, dict)
def test_form_dict_keys(self):
for res in self.std_results:
assert set(res) <= set(self.known_keys)
def test_results_baseline(self):
res = self.std_results[0]
for key, value in self.known_nonbootstrapped_res.items():
assert_array_almost_equal(res[key], value)
def test_results_bootstrapped(self):
results = cbook.boxplot_stats(self.data, bootstrap=10000)
res = results[0]
for key, value in self.known_bootstrapped_ci.items():
assert_approx_equal(res[key], value)
def test_results_whiskers_float(self):
results = cbook.boxplot_stats(self.data, whis=3)
res = results[0]
for key, value in self.known_whis3_res.items():
assert_array_almost_equal(res[key], value)
def test_results_whiskers_range(self):
results = cbook.boxplot_stats(self.data, whis=[0, 100])
res = results[0]
for key, value in self.known_res_range.items():
assert_array_almost_equal(res[key], value)
def test_results_whiskers_percentiles(self):
results = cbook.boxplot_stats(self.data, whis=[5, 95])
res = results[0]
for key, value in self.known_res_percentiles.items():
assert_array_almost_equal(res[key], value)
def test_results_withlabels(self):
labels = ['Test1', 2, 'Aardvark', 4]
results = cbook.boxplot_stats(self.data, labels=labels)
for lab, res in zip(labels, results):
assert res['label'] == lab
results = cbook.boxplot_stats(self.data)
for res in results:
assert 'label' not in res
def test_label_error(self):
labels = [1, 2]
with pytest.raises(ValueError):
cbook.boxplot_stats(self.data, labels=labels)
def test_bad_dims(self):
data = np.random.normal(size=(34, 34, 34))
with pytest.raises(ValueError):
cbook.boxplot_stats(data)
def test_boxplot_stats_autorange_false(self):
x = np.zeros(shape=140)
x = np.hstack([-25, x, 25])
bstats_false = cbook.boxplot_stats(x, autorange=False)
bstats_true = cbook.boxplot_stats(x, autorange=True)
assert bstats_false[0]['whislo'] == 0
assert bstats_false[0]['whishi'] == 0
assert_array_almost_equal(bstats_false[0]['fliers'], [-25, 25])
assert bstats_true[0]['whislo'] == -25
assert bstats_true[0]['whishi'] == 25
assert_array_almost_equal(bstats_true[0]['fliers'], [])
class Test_callback_registry:
def setup_method(self):
self.signal = 'test'
self.callbacks = cbook.CallbackRegistry()
def connect(self, s, func, pickle):
if pickle:
return self.callbacks.connect(s, func)
else:
return self.callbacks._connect_picklable(s, func)
def disconnect(self, cid):
return self.callbacks.disconnect(cid)
def count(self):
count1 = len(self.callbacks._func_cid_map.get(self.signal, []))
count2 = len(self.callbacks.callbacks.get(self.signal))
assert count1 == count2
return count1
def is_empty(self):
np.testing.break_cycles()
assert self.callbacks._func_cid_map == {}
assert self.callbacks.callbacks == {}
assert self.callbacks._pickled_cids == set()
def is_not_empty(self):
np.testing.break_cycles()
assert self.callbacks._func_cid_map != {}
assert self.callbacks.callbacks != {}
def test_cid_restore(self):
cb = cbook.CallbackRegistry()
cb.connect('a', lambda: None)
cb2 = pickle.loads(pickle.dumps(cb))
cid = cb2.connect('c', lambda: None)
assert cid == 1
@pytest.mark.parametrize('pickle', [True, False])
def test_callback_complete(self, pickle):
# ensure we start with an empty registry
self.is_empty()
# create a class for testing
mini_me = Test_callback_registry()
# test that we can add a callback
cid1 = self.connect(self.signal, mini_me.dummy, pickle)
assert type(cid1) is int
self.is_not_empty()
# test that we don't add a second callback
cid2 = self.connect(self.signal, mini_me.dummy, pickle)
assert cid1 == cid2
self.is_not_empty()
assert len(self.callbacks._func_cid_map) == 1
assert len(self.callbacks.callbacks) == 1
del mini_me
# check we now have no callbacks registered
self.is_empty()
@pytest.mark.parametrize('pickle', [True, False])
def test_callback_disconnect(self, pickle):
# ensure we start with an empty registry
self.is_empty()
# create a class for testing
mini_me = Test_callback_registry()
# test that we can add a callback
cid1 = self.connect(self.signal, mini_me.dummy, pickle)
assert type(cid1) is int
self.is_not_empty()
self.disconnect(cid1)
# check we now have no callbacks registered
self.is_empty()
@pytest.mark.parametrize('pickle', [True, False])
def test_callback_wrong_disconnect(self, pickle):
# ensure we start with an empty registry
self.is_empty()
# create a class for testing
mini_me = Test_callback_registry()
# test that we can add a callback
cid1 = self.connect(self.signal, mini_me.dummy, pickle)
assert type(cid1) is int
self.is_not_empty()
self.disconnect("foo")
# check we still have callbacks registered
self.is_not_empty()
@pytest.mark.parametrize('pickle', [True, False])
def test_registration_on_non_empty_registry(self, pickle):
# ensure we start with an empty registry
self.is_empty()
# setup the registry with a callback
mini_me = Test_callback_registry()
self.connect(self.signal, mini_me.dummy, pickle)
# Add another callback
mini_me2 = Test_callback_registry()
self.connect(self.signal, mini_me2.dummy, pickle)
# Remove and add the second callback
mini_me2 = Test_callback_registry()
self.connect(self.signal, mini_me2.dummy, pickle)
# We still have 2 references
self.is_not_empty()
assert self.count() == 2
# Removing the last 2 references
mini_me = None
mini_me2 = None
self.is_empty()
def dummy(self):
pass
def test_pickling(self):
assert hasattr(pickle.loads(pickle.dumps(cbook.CallbackRegistry())),
"callbacks")
def test_callbackregistry_default_exception_handler(capsys, monkeypatch):
cb = cbook.CallbackRegistry()
cb.connect("foo", lambda: None)
monkeypatch.setattr(
cbook, "_get_running_interactive_framework", lambda: None)
with pytest.raises(TypeError):
cb.process("foo", "argument mismatch")
outerr = capsys.readouterr()
assert outerr.out == outerr.err == ""
monkeypatch.setattr(
cbook, "_get_running_interactive_framework", lambda: "not-none")
cb.process("foo", "argument mismatch") # No error in that case.
outerr = capsys.readouterr()
assert outerr.out == ""
assert "takes 0 positional arguments but 1 was given" in outerr.err
def raising_cb_reg(func):
class TestException(Exception):
pass
def raise_runtime_error():
raise RuntimeError
def raise_value_error():
raise ValueError
def transformer(excp):
if isinstance(excp, RuntimeError):
raise TestException
raise excp
# old default
cb_old = cbook.CallbackRegistry(exception_handler=None)
cb_old.connect('foo', raise_runtime_error)
# filter
cb_filt = cbook.CallbackRegistry(exception_handler=transformer)
cb_filt.connect('foo', raise_runtime_error)
# filter
cb_filt_pass = cbook.CallbackRegistry(exception_handler=transformer)
cb_filt_pass.connect('foo', raise_value_error)
return pytest.mark.parametrize('cb, excp',
[[cb_old, RuntimeError],
[cb_filt, TestException],
[cb_filt_pass, ValueError]])(func)
@raising_cb_reg
def test_callbackregistry_custom_exception_handler(monkeypatch, cb, excp):
monkeypatch.setattr(
cbook, "_get_running_interactive_framework", lambda: None)
with pytest.raises(excp):
cb.process('foo')
def test_callbackregistry_signals():
cr = cbook.CallbackRegistry(signals=["foo"])
results = []
def cb(x): results.append(x)
cr.connect("foo", cb)
with pytest.raises(ValueError):
cr.connect("bar", cb)
cr.process("foo", 1)
with pytest.raises(ValueError):
cr.process("bar", 1)
assert results == [1]
def test_callbackregistry_blocking():
# Needs an exception handler for interactive testing environments
# that would only print this out instead of raising the exception
def raise_handler(excp):
raise excp
cb = cbook.CallbackRegistry(exception_handler=raise_handler)
def test_func1():
raise ValueError("1 should be blocked")
def test_func2():
raise ValueError("2 should be blocked")
cb.connect("test1", test_func1)
cb.connect("test2", test_func2)
# block all of the callbacks to make sure they aren't processed
with cb.blocked():
cb.process("test1")
cb.process("test2")
# block individual callbacks to make sure the other is still processed
with cb.blocked(signal="test1"):
# Blocked
cb.process("test1")
# Should raise
with pytest.raises(ValueError, match="2 should be blocked"):
cb.process("test2")
# Make sure the original callback functions are there after blocking
with pytest.raises(ValueError, match="1 should be blocked"):
cb.process("test1")
with pytest.raises(ValueError, match="2 should be blocked"):
cb.process("test2")
@pytest.mark.parametrize('line, result', [
('a : no_comment', 'a : no_comment'),
('a : "quoted str"', 'a : "quoted str"'),
('a : "quoted str" # comment', 'a : "quoted str"'),
('a : "#000000"', 'a : "#000000"'),
('a : "#000000" # comment', 'a : "#000000"'),
('a : ["#000000", "#FFFFFF"]', 'a : ["#000000", "#FFFFFF"]'),
('a : ["#000000", "#FFFFFF"] # comment', 'a : ["#000000", "#FFFFFF"]'),
('a : val # a comment "with quotes"', 'a : val'),
('# only comment "with quotes" xx', ''),
])
def test_strip_comment(line, result):
"""Strip everything from the first unquoted #."""
assert cbook._strip_comment(line) == result
def test_strip_comment_invalid():
with pytest.raises(ValueError, match="Missing closing quote"):
cbook._strip_comment('grid.color: "aa')
def test_sanitize_sequence():
d = {'a': 1, 'b': 2, 'c': 3}
k = ['a', 'b', 'c']
v = [1, 2, 3]
i = [('a', 1), ('b', 2), ('c', 3)]
assert k == sorted(cbook.sanitize_sequence(d.keys()))
assert v == sorted(cbook.sanitize_sequence(d.values()))
assert i == sorted(cbook.sanitize_sequence(d.items()))
assert i == cbook.sanitize_sequence(i)
assert k == cbook.sanitize_sequence(k)
fail_mapping: tuple[tuple[dict, dict], ...] = (
({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['b']}}),
({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
)
pass_mapping: tuple[tuple[Any, dict, dict], ...] = (
(None, {}, {}),
({'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {}),
({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
)
@pytest.mark.parametrize('inp, kwargs_to_norm', fail_mapping)
def test_normalize_kwargs_fail(inp, kwargs_to_norm):
with pytest.raises(TypeError), \
_api.suppress_matplotlib_deprecation_warning():
cbook.normalize_kwargs(inp, **kwargs_to_norm)
@pytest.mark.parametrize('inp, expected, kwargs_to_norm',
pass_mapping)
def test_normalize_kwargs_pass(inp, expected, kwargs_to_norm):
with _api.suppress_matplotlib_deprecation_warning():
# No other warning should be emitted.
assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm)
def test_warn_external_frame_embedded_python():
with patch.object(cbook, "sys") as mock_sys:
mock_sys._getframe = Mock(return_value=None)
with pytest.warns(UserWarning, match=r"\Adummy\Z"):
_api.warn_external("dummy")
def test_to_prestep():
x = np.arange(4)
y1 = np.arange(4)
y2 = np.arange(4)[::-1]
xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2)
x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype=float)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
assert_array_equal(y2_target, y2s)
xs, y1s = cbook.pts_to_prestep(x, y1)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
def test_to_prestep_empty():
steps = cbook.pts_to_prestep([], [])
assert steps.shape == (2, 0)
def test_to_poststep():
x = np.arange(4)
y1 = np.arange(4)
y2 = np.arange(4)[::-1]
xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2)
x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype=float)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
assert_array_equal(y2_target, y2s)
xs, y1s = cbook.pts_to_poststep(x, y1)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
def test_to_poststep_empty():
steps = cbook.pts_to_poststep([], [])
assert steps.shape == (2, 0)
def test_to_midstep():
x = np.arange(4)
y1 = np.arange(4)
y2 = np.arange(4)[::-1]
xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2)
x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype=float)
y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype=float)
y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype=float)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
assert_array_equal(y2_target, y2s)
xs, y1s = cbook.pts_to_midstep(x, y1)
assert_array_equal(x_target, xs)
assert_array_equal(y1_target, y1s)
def test_to_midstep_empty():
steps = cbook.pts_to_midstep([], [])
assert steps.shape == (2, 0)
@pytest.mark.parametrize(
"args",
[(np.arange(12).reshape(3, 4), 'a'),
(np.arange(12), 'a'),
(np.arange(12), np.arange(3))])
def test_step_fails(args):
with pytest.raises(ValueError):
cbook.pts_to_prestep(*args)
def test_grouper():
class Dummy:
pass
a, b, c, d, e = objs = [Dummy() for _ in range(5)]
g = cbook.Grouper()
g.join(*objs)
assert set(list(g)[0]) == set(objs)
assert set(g.get_siblings(a)) == set(objs)
for other in objs[1:]:
assert g.joined(a, other)
g.remove(a)
for other in objs[1:]:
assert not g.joined(a, other)
for A, B in itertools.product(objs[1:], objs[1:]):
assert g.joined(A, B)
def test_grouper_private():
class Dummy:
pass
objs = [Dummy() for _ in range(5)]
g = cbook.Grouper()
g.join(*objs)
# reach in and touch the internals !
mapping = g._mapping
for o in objs:
assert o in mapping
base_set = mapping[objs[0]]
for o in objs[1:]:
assert mapping[o] is base_set
def test_flatiter():
x = np.arange(5)
it = x.flat
assert 0 == next(it)
assert 1 == next(it)
ret = cbook._safe_first_finite(it)
assert ret == 0
assert 0 == next(it)
assert 1 == next(it)
def test__safe_first_finite_all_nan():
arr = np.full(2, np.nan)
ret = cbook._safe_first_finite(arr)
assert np.isnan(ret)
def test__safe_first_finite_all_inf():
arr = np.full(2, np.inf)
ret = cbook._safe_first_finite(arr)
assert np.isinf(ret)
def test_reshape2d():
class Dummy:
pass
xnew = cbook._reshape_2D([], 'x')
assert np.shape(xnew) == (1, 0)
x = [Dummy() for _ in range(5)]
xnew = cbook._reshape_2D(x, 'x')
assert np.shape(xnew) == (1, 5)
x = np.arange(5)
xnew = cbook._reshape_2D(x, 'x')
assert np.shape(xnew) == (1, 5)
x = [[Dummy() for _ in range(5)] for _ in range(3)]
xnew = cbook._reshape_2D(x, 'x')
assert np.shape(xnew) == (3, 5)
# this is strange behaviour, but...
x = np.random.rand(3, 5)
xnew = cbook._reshape_2D(x, 'x')
assert np.shape(xnew) == (5, 3)
# Test a list of lists which are all of length 1
x = [[1], [2], [3]]
xnew = cbook._reshape_2D(x, 'x')
assert isinstance(xnew, list)
assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (1,)
assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (1,)
assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)
# Test a list of zero-dimensional arrays
x = [np.array(0), np.array(1), np.array(2)]
xnew = cbook._reshape_2D(x, 'x')
assert isinstance(xnew, list)
assert len(xnew) == 1
assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
# Now test with a list of lists with different lengths, which means the
# array will internally be converted to a 1D object array of lists
x = [[1, 2, 3], [3, 4], [2]]
xnew = cbook._reshape_2D(x, 'x')
assert isinstance(xnew, list)
assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (2,)
assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)
# We now need to make sure that this works correctly for Numpy subclasses
# where iterating over items can return subclasses too, which may be
# iterable even if they are scalars. To emulate this, we make a Numpy
# array subclass that returns Numpy 'scalars' when iterating or accessing
# values, and these are technically iterable if checking for example
# isinstance(x, collections.abc.Iterable).
class ArraySubclass(np.ndarray):
def __iter__(self):
for value in super().__iter__():
yield np.array(value)
def __getitem__(self, item):
return np.array(super().__getitem__(item))
v = np.arange(10, dtype=float)
x = ArraySubclass((10,), dtype=float, buffer=v.data)
xnew = cbook._reshape_2D(x, 'x')
# We check here that the array wasn't split up into many individual
# ArraySubclass, which is what used to happen due to a bug in _reshape_2D
assert len(xnew) == 1
assert isinstance(xnew[0], ArraySubclass)
# check list of strings:
x = ['a', 'b', 'c', 'c', 'dd', 'e', 'f', 'ff', 'f']
xnew = cbook._reshape_2D(x, 'x')
assert len(xnew[0]) == len(x)
assert isinstance(xnew[0], np.ndarray)
def test_reshape2d_pandas(pd):
# separate to allow the rest of the tests to run if no pandas...
X = np.arange(30).reshape(10, 3)
x = pd.DataFrame(X, columns=["a", "b", "c"])
Xnew = cbook._reshape_2D(x, 'x')
# Need to check each row because _reshape_2D returns a list of arrays:
for x, xnew in zip(X.T, Xnew):
np.testing.assert_array_equal(x, xnew)
def test_reshape2d_xarray(xr):
# separate to allow the rest of the tests to run if no xarray...
X = np.arange(30).reshape(10, 3)
x = xr.DataArray(X, dims=["x", "y"])
Xnew = cbook._reshape_2D(x, 'x')
# Need to check each row because _reshape_2D returns a list of arrays:
for x, xnew in zip(X.T, Xnew):
np.testing.assert_array_equal(x, xnew)
def test_index_of_pandas(pd):
# separate to allow the rest of the tests to run if no pandas...
X = np.arange(30).reshape(10, 3)
x = pd.DataFrame(X, columns=["a", "b", "c"])
Idx, Xnew = cbook.index_of(x)
np.testing.assert_array_equal(X, Xnew)
IdxRef = np.arange(10)
np.testing.assert_array_equal(Idx, IdxRef)
def test_index_of_xarray(xr):
# separate to allow the rest of the tests to run if no xarray...
X = np.arange(30).reshape(10, 3)
x = xr.DataArray(X, dims=["x", "y"])
Idx, Xnew = cbook.index_of(x)
np.testing.assert_array_equal(X, Xnew)
IdxRef = np.arange(10)
np.testing.assert_array_equal(Idx, IdxRef)
def test_contiguous_regions():
a, b, c = 3, 4, 5
# Starts and ends with True
mask = [True]*a + [False]*b + [True]*c
expected = [(0, a), (a+b, a+b+c)]
assert cbook.contiguous_regions(mask) == expected
d, e = 6, 7
# Starts with True ends with False
mask = mask + [False]*e
assert cbook.contiguous_regions(mask) == expected
# Starts with False ends with True
mask = [False]*d + mask[:-e]
expected = [(d, d+a), (d+a+b, d+a+b+c)]
assert cbook.contiguous_regions(mask) == expected
# Starts and ends with False
mask = mask + [False]*e
assert cbook.contiguous_regions(mask) == expected
# No True in mask
assert cbook.contiguous_regions([False]*5) == []
# Empty mask
assert cbook.contiguous_regions([]) == []
def test_safe_first_element_pandas_series(pd):
# deliberately create a pandas series with index not starting from 0
s = pd.Series(range(5), index=range(10, 15))
actual = cbook._safe_first_finite(s)
assert actual == 0
def test_warn_external(recwarn):
_api.warn_external("oops")
assert len(recwarn) == 1
assert recwarn[0].filename == __file__
def test_array_patch_perimeters():
# This compares the old implementation as a reference for the
# vectorized one.
def check(x, rstride, cstride):
rows, cols = x.shape
row_inds = [*range(0, rows-1, rstride), rows-1]
col_inds = [*range(0, cols-1, cstride), cols-1]
polys = []
for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
# +1 ensures we share edges between polygons
ps = cbook._array_perimeter(x[rs:rs_next+1, cs:cs_next+1]).T
polys.append(ps)
polys = np.asarray(polys)
assert np.array_equal(polys,
cbook._array_patch_perimeters(
x, rstride=rstride, cstride=cstride))
def divisors(n):
return [i for i in range(1, n + 1) if n % i == 0]
for rows, cols in [(5, 5), (7, 14), (13, 9)]:
x = np.arange(rows * cols).reshape(rows, cols)
for rstride, cstride in itertools.product(divisors(rows - 1),
divisors(cols - 1)):
check(x, rstride=rstride, cstride=cstride)
def test_setattr_cm():
class A:
cls_level = object()
override = object()
def __init__(self):
self.aardvark = 'aardvark'
self.override = 'override'
self._p = 'p'
def meth(self):
...
@classmethod
def classy(cls):
...
@staticmethod
def static():
...
@property
def prop(self):
return self._p
@prop.setter
def prop(self, val):
self._p = val
class B(A):
...
other = A()
def verify_pre_post_state(obj):
# When you access a Python method the function is bound
# to the object at access time so you get a new instance
# of MethodType every time.
#
# https://docs.python.org/3/howto/descriptor.html#functions-and-methods
assert obj.meth is not obj.meth
# normal attribute should give you back the same instance every time
assert obj.aardvark is obj.aardvark
assert a.aardvark == 'aardvark'
# and our property happens to give the same instance every time
assert obj.prop is obj.prop
assert obj.cls_level is A.cls_level
assert obj.override == 'override'
assert not hasattr(obj, 'extra')
assert obj.prop == 'p'
assert obj.monkey == other.meth
assert obj.cls_level is A.cls_level
assert 'cls_level' not in obj.__dict__
assert 'classy' not in obj.__dict__
assert 'static' not in obj.__dict__
a = B()
a.monkey = other.meth
verify_pre_post_state(a)
with cbook._setattr_cm(
a, prop='squirrel',
aardvark='moose', meth=lambda: None,
override='boo', extra='extra',
monkey=lambda: None, cls_level='bob',
classy='classy', static='static'):
# because we have set a lambda, it is normal attribute access
# and the same every time
assert a.meth is a.meth
assert a.aardvark is a.aardvark
assert a.aardvark == 'moose'
assert a.override == 'boo'
assert a.extra == 'extra'
assert a.prop == 'squirrel'
assert a.monkey != other.meth
assert a.cls_level == 'bob'
assert a.classy == 'classy'
assert a.static == 'static'
verify_pre_post_state(a)
def test_format_approx():
f = cbook._format_approx
assert f(0, 1) == '0'
assert f(0, 2) == '0'
assert f(0, 3) == '0'
assert f(-0.0123, 1) == '-0'
assert f(1e-7, 5) == '0'
assert f(0.0012345600001, 5) == '0.00123'
assert f(-0.0012345600001, 5) == '-0.00123'
assert f(0.0012345600001, 8) == f(0.0012345600001, 10) == '0.00123456'
def test_safe_first_element_with_none():
datetime_lst = [date.today() + timedelta(days=i) for i in range(10)]
datetime_lst[0] = None
actual = cbook._safe_first_finite(datetime_lst)
assert actual is not None and actual == datetime_lst[1]
def test_strip_math():
assert strip_math(r'1 \times 2') == r'1 \times 2'
assert strip_math(r'$1 \times 2$') == '1 x 2'
assert strip_math(r'$\rm{hi}$') == 'hi'
@pytest.mark.parametrize('fmt, value, result', [
('%.2f m', 0.2, '0.20 m'),
('{:.2f} m', 0.2, '0.20 m'),
('{} m', 0.2, '0.2 m'),
('const', 0.2, 'const'),
('%d or {}', 0.2, '0 or {}'),
('{{{:,.0f}}}', 2e5, '{200,000}'),
('{:.2%}', 2/3, '66.67%'),
('$%g', 2.54, '$2.54'),
])
def test_auto_format_str(fmt, value, result):
"""Apply *value* to the format string *fmt*."""
assert cbook._auto_format_str(fmt, value) == result
assert cbook._auto_format_str(fmt, np.float64(value)) == result
def test_unpack_to_numpy_from_torch():
"""
Test that torch tensors are converted to NumPy arrays.
We don't want to create a dependency on torch in the test suite, so we mock it.
"""
class Tensor:
def __init__(self, data):
self.data = data
def __array__(self):
return self.data
torch = ModuleType('torch')
torch.Tensor = Tensor
sys.modules['torch'] = torch
data = np.arange(10)
torch_tensor = torch.Tensor(data)
result = cbook._unpack_to_numpy(torch_tensor)
assert result is torch_tensor.__array__()
def test_unpack_to_numpy_from_jax():
"""
Test that jax arrays are converted to NumPy arrays.
We don't want to create a dependency on jax in the test suite, so we mock it.
"""
class Array:
def __init__(self, data):
self.data = data
def __array__(self):
return self.data
jax = ModuleType('jax')
jax.Array = Array
sys.modules['jax'] = jax
data = np.arange(10)
jax_array = jax.Array(data)
result = cbook._unpack_to_numpy(jax_array)
assert result is jax_array.__array__()