AIM-PIbd-32-Kurbanova-A-A/aimenv/Lib/site-packages/jedi/inference/value/iterable.py
2024-10-02 22:15:59 +04:00

648 lines
23 KiB
Python

"""
Contains all classes and functions to deal with lists, dicts, generators and
iterators in general.
"""
from jedi.inference import compiled
from jedi.inference import analysis
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
LazyTreeValue
from jedi.inference.helpers import get_int_or_none, is_string, \
reraise_getitem_errors, SimpleGetItemNotFound
from jedi.inference.utils import safe_property, to_list
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.filters import LazyAttributeOverwrite, publish_method
from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \
ContextualizedNode, iterate_values, sentinel, \
LazyValueWrapper
from jedi.parser_utils import get_sync_comp_fors
from jedi.inference.context import CompForContext
from jedi.inference.value.dynamic_arrays import check_array_additions
class IterableMixin:
def py__next__(self, contextualized_node=None):
return self.py__iter__(contextualized_node)
def py__stop_iteration_returns(self):
return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
# At the moment, safe values are simple values like "foo", 1 and not
# lists/dicts. Therefore as a small speed optimization we can just do the
# default instead of resolving the lazy wrapped values, that are just
# doing this in the end as well.
# This mostly speeds up patterns like `sys.version_info >= (3, 0)` in
# typeshed.
get_safe_value = Value.get_safe_value
class GeneratorBase(LazyAttributeOverwrite, IterableMixin):
array_type = None
def _get_wrapped_value(self):
instance, = self._get_cls().execute_annotation()
return instance
def _get_cls(self):
generator, = self.inference_state.typing_module.py__getattribute__('Generator')
return generator
def py__bool__(self):
return True
@publish_method('__iter__')
def _iter(self, arguments):
return ValueSet([self])
@publish_method('send')
@publish_method('__next__')
def _next(self, arguments):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def py__stop_iteration_returns(self):
return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
@property
def name(self):
return compiled.CompiledValueName(self, 'Generator')
def get_annotated_class_object(self):
from jedi.inference.gradual.generics import TupleGenericManager
gen_values = self.merge_types_of_iterate().py__class__()
gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES))
return self._get_cls().with_generics(gm)
class Generator(GeneratorBase):
"""Handling of `yield` functions."""
def __init__(self, inference_state, func_execution_context):
super().__init__(inference_state)
self._func_execution_context = func_execution_context
def py__iter__(self, contextualized_node=None):
iterators = self._func_execution_context.infer_annotations()
if iterators:
return iterators.iterate(contextualized_node)
return self._func_execution_context.get_yield_lazy_values()
def py__stop_iteration_returns(self):
return self._func_execution_context.get_return_values()
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._func_execution_context)
def comprehension_from_atom(inference_state, value, atom):
bracket = atom.children[0]
test_list_comp = atom.children[1]
if bracket == '{':
if atom.children[1].children[1] == ':':
sync_comp_for = test_list_comp.children[3]
if sync_comp_for.type == 'comp_for':
sync_comp_for = sync_comp_for.children[1]
return DictComprehension(
inference_state,
value,
sync_comp_for_node=sync_comp_for,
key_node=test_list_comp.children[0],
value_node=test_list_comp.children[2],
)
else:
cls = SetComprehension
elif bracket == '(':
cls = GeneratorComprehension
elif bracket == '[':
cls = ListComprehension
sync_comp_for = test_list_comp.children[1]
if sync_comp_for.type == 'comp_for':
sync_comp_for = sync_comp_for.children[1]
return cls(
inference_state,
defining_context=value,
sync_comp_for_node=sync_comp_for,
entry_node=test_list_comp.children[0],
)
class ComprehensionMixin:
@inference_state_method_cache()
def _get_comp_for_context(self, parent_context, comp_for):
return CompForContext(parent_context, comp_for)
def _nested(self, comp_fors, parent_context=None):
comp_for = comp_fors[0]
is_async = comp_for.parent.type == 'comp_for'
input_node = comp_for.children[3]
parent_context = parent_context or self._defining_context
input_types = parent_context.infer_node(input_node)
cn = ContextualizedNode(parent_context, input_node)
iterated = input_types.iterate(cn, is_async=is_async)
exprlist = comp_for.children[1]
for i, lazy_value in enumerate(iterated):
types = lazy_value.infer()
dct = unpack_tuple_to_dict(parent_context, types, exprlist)
context = self._get_comp_for_context(
parent_context,
comp_for,
)
with context.predefine_names(comp_for, dct):
try:
yield from self._nested(comp_fors[1:], context)
except IndexError:
iterated = context.infer_node(self._entry_node)
if self.array_type == 'dict':
yield iterated, context.infer_node(self._value_node)
else:
yield iterated
@inference_state_method_cache(default=[])
@to_list
def _iterate(self):
comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node))
yield from self._nested(comp_fors)
def py__iter__(self, contextualized_node=None):
for set_ in self._iterate():
yield LazyKnownValues(set_)
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node)
class _DictMixin:
def _get_generics(self):
return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values())
class Sequence(LazyAttributeOverwrite, IterableMixin):
api_type = 'instance'
@property
def name(self):
return compiled.CompiledValueName(self, self.array_type)
def _get_generics(self):
return (self.merge_types_of_iterate().py__class__(),)
@inference_state_method_cache(default=())
def _cached_generics(self):
return self._get_generics()
def _get_wrapped_value(self):
from jedi.inference.gradual.base import GenericClass
from jedi.inference.gradual.generics import TupleGenericManager
klass = compiled.builtin_from_name(self.inference_state, self.array_type)
c, = GenericClass(
klass,
TupleGenericManager(self._cached_generics())
).execute_annotation()
return c
def py__bool__(self):
return None # We don't know the length, because of appends.
@safe_property
def parent(self):
return self.inference_state.builtins_module
def py__getitem__(self, index_value_set, contextualized_node):
if self.array_type == 'dict':
return self._dict_values()
return iterate_values(ValueSet([self]))
class _BaseComprehension(ComprehensionMixin):
def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node):
assert sync_comp_for_node.type == 'sync_comp_for'
super().__init__(inference_state)
self._defining_context = defining_context
self._sync_comp_for_node = sync_comp_for_node
self._entry_node = entry_node
class ListComprehension(_BaseComprehension, Sequence):
array_type = 'list'
def py__simple_getitem__(self, index):
if isinstance(index, slice):
return ValueSet([self])
all_types = list(self.py__iter__())
with reraise_getitem_errors(IndexError, TypeError):
lazy_value = all_types[index]
return lazy_value.infer()
class SetComprehension(_BaseComprehension, Sequence):
array_type = 'set'
class GeneratorComprehension(_BaseComprehension, GeneratorBase):
pass
class _DictKeyMixin:
# TODO merge with _DictMixin?
def get_mapping_item_values(self):
return self._dict_keys(), self._dict_values()
def get_key_values(self):
# TODO merge with _dict_keys?
return self._dict_keys()
class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin):
array_type = 'dict'
def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node):
assert sync_comp_for_node.type == 'sync_comp_for'
super().__init__(inference_state)
self._defining_context = defining_context
self._sync_comp_for_node = sync_comp_for_node
self._entry_node = key_node
self._value_node = value_node
def py__iter__(self, contextualized_node=None):
for keys, values in self._iterate():
yield LazyKnownValues(keys)
def py__simple_getitem__(self, index):
for keys, values in self._iterate():
for k in keys:
# Be careful in the future if refactoring, index could be a
# slice object.
if k.get_safe_value(default=object()) == index:
return values
raise SimpleGetItemNotFound()
def _dict_keys(self):
return ValueSet.from_sets(keys for keys, values in self._iterate())
def _dict_values(self):
return ValueSet.from_sets(values for keys, values in self._iterate())
@publish_method('values')
def _imitate_values(self, arguments):
lazy_value = LazyKnownValues(self._dict_values())
return ValueSet([FakeList(self.inference_state, [lazy_value])])
@publish_method('items')
def _imitate_items(self, arguments):
lazy_values = [
LazyKnownValue(
FakeTuple(
self.inference_state,
[LazyKnownValues(key),
LazyKnownValues(value)]
)
)
for key, value in self._iterate()
]
return ValueSet([FakeList(self.inference_state, lazy_values)])
def exact_key_items(self):
# NOTE: A smarter thing can probably done here to achieve better
# completions, but at least like this jedi doesn't crash
return []
class SequenceLiteralValue(Sequence):
_TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist'
mapping = {'(': 'tuple',
'[': 'list',
'{': 'set'}
def __init__(self, inference_state, defining_context, atom):
super().__init__(inference_state)
self.atom = atom
self._defining_context = defining_context
if self.atom.type in self._TUPLE_LIKE:
self.array_type = 'tuple'
else:
self.array_type = SequenceLiteralValue.mapping[atom.children[0]]
"""The builtin name of the array (list, set, tuple or dict)."""
def _get_generics(self):
if self.array_type == 'tuple':
return tuple(x.infer().py__class__() for x in self.py__iter__())
return super()._get_generics()
def py__simple_getitem__(self, index):
"""Here the index is an int/str. Raises IndexError/KeyError."""
if isinstance(index, slice):
return ValueSet([self])
else:
with reraise_getitem_errors(TypeError, KeyError, IndexError):
node = self.get_tree_entries()[index]
if node == ':' or node.type == 'subscript':
return NO_VALUES
return self._defining_context.infer_node(node)
def py__iter__(self, contextualized_node=None):
"""
While values returns the possible values for any array field, this
function returns the value for a certain index.
"""
for node in self.get_tree_entries():
if node == ':' or node.type == 'subscript':
# TODO this should probably use at least part of the code
# of infer_subscript_list.
yield LazyKnownValue(Slice(self._defining_context, None, None, None))
else:
yield LazyTreeValue(self._defining_context, node)
yield from check_array_additions(self._defining_context, self)
def py__len__(self):
# This function is not really used often. It's more of a try.
return len(self.get_tree_entries())
def get_tree_entries(self):
c = self.atom.children
if self.atom.type in self._TUPLE_LIKE:
return c[::2]
array_node = c[1]
if array_node in (']', '}', ')'):
return [] # Direct closing bracket, doesn't contain items.
if array_node.type == 'testlist_comp':
# filter out (for now) pep 448 single-star unpacking
return [value for value in array_node.children[::2]
if value.type != "star_expr"]
elif array_node.type == 'dictorsetmaker':
kv = []
iterator = iter(array_node.children)
for key in iterator:
if key == "**":
# dict with pep 448 double-star unpacking
# for now ignoring the values imported by **
next(iterator)
next(iterator, None) # Possible comma.
else:
op = next(iterator, None)
if op is None or op == ',':
if key.type == "star_expr":
# pep 448 single-star unpacking
# for now ignoring values imported by *
pass
else:
kv.append(key) # A set.
else:
assert op == ':' # A dict.
kv.append((key, next(iterator)))
next(iterator, None) # Possible comma.
return kv
else:
if array_node.type == "star_expr":
# pep 448 single-star unpacking
# for now ignoring values imported by *
return []
else:
return [array_node]
def __repr__(self):
return "<%s of %s>" % (self.__class__.__name__, self.atom)
class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin):
array_type = 'dict'
def __init__(self, inference_state, defining_context, atom):
# Intentionally don't call the super class. This is definitely a sign
# that the architecture is bad and we should refactor.
Sequence.__init__(self, inference_state)
self._defining_context = defining_context
self.atom = atom
def py__simple_getitem__(self, index):
"""Here the index is an int/str. Raises IndexError/KeyError."""
compiled_value_index = compiled.create_simple_object(self.inference_state, index)
for key, value in self.get_tree_entries():
for k in self._defining_context.infer_node(key):
for key_v in k.execute_operation(compiled_value_index, '=='):
if key_v.get_safe_value():
return self._defining_context.infer_node(value)
raise SimpleGetItemNotFound('No key found in dictionary %s.' % self)
def py__iter__(self, contextualized_node=None):
"""
While values returns the possible values for any array field, this
function returns the value for a certain index.
"""
# Get keys.
types = NO_VALUES
for k, _ in self.get_tree_entries():
types |= self._defining_context.infer_node(k)
# We don't know which dict index comes first, therefore always
# yield all the types.
for _ in types:
yield LazyKnownValues(types)
@publish_method('values')
def _imitate_values(self, arguments):
lazy_value = LazyKnownValues(self._dict_values())
return ValueSet([FakeList(self.inference_state, [lazy_value])])
@publish_method('items')
def _imitate_items(self, arguments):
lazy_values = [
LazyKnownValue(FakeTuple(
self.inference_state,
(LazyTreeValue(self._defining_context, key_node),
LazyTreeValue(self._defining_context, value_node))
)) for key_node, value_node in self.get_tree_entries()
]
return ValueSet([FakeList(self.inference_state, lazy_values)])
def exact_key_items(self):
"""
Returns a generator of tuples like dict.items(), where the key is
resolved (as a string) and the values are still lazy values.
"""
for key_node, value in self.get_tree_entries():
for key in self._defining_context.infer_node(key_node):
if is_string(key):
yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)
def _dict_values(self):
return ValueSet.from_sets(
self._defining_context.infer_node(v)
for k, v in self.get_tree_entries()
)
def _dict_keys(self):
return ValueSet.from_sets(
self._defining_context.infer_node(k)
for k, v in self.get_tree_entries()
)
class _FakeSequence(Sequence):
def __init__(self, inference_state, lazy_value_list):
"""
type should be one of "tuple", "list"
"""
super().__init__(inference_state)
self._lazy_value_list = lazy_value_list
def py__simple_getitem__(self, index):
if isinstance(index, slice):
return ValueSet([self])
with reraise_getitem_errors(IndexError, TypeError):
lazy_value = self._lazy_value_list[index]
return lazy_value.infer()
def py__iter__(self, contextualized_node=None):
return self._lazy_value_list
def py__bool__(self):
return bool(len(self._lazy_value_list))
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)
class FakeTuple(_FakeSequence):
array_type = 'tuple'
class FakeList(_FakeSequence):
array_type = 'tuple'
class FakeDict(_DictMixin, Sequence, _DictKeyMixin):
array_type = 'dict'
def __init__(self, inference_state, dct):
super().__init__(inference_state)
self._dct = dct
def py__iter__(self, contextualized_node=None):
for key in self._dct:
yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key))
def py__simple_getitem__(self, index):
with reraise_getitem_errors(KeyError, TypeError):
lazy_value = self._dct[index]
return lazy_value.infer()
@publish_method('values')
def _values(self, arguments):
return ValueSet([FakeTuple(
self.inference_state,
[LazyKnownValues(self._dict_values())]
)])
def _dict_values(self):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values())
def _dict_keys(self):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def exact_key_items(self):
return self._dct.items()
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._dct)
class MergedArray(Sequence):
def __init__(self, inference_state, arrays):
super().__init__(inference_state)
self.array_type = arrays[-1].array_type
self._arrays = arrays
def py__iter__(self, contextualized_node=None):
for array in self._arrays:
yield from array.py__iter__()
def py__simple_getitem__(self, index):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def unpack_tuple_to_dict(context, types, exprlist):
"""
Unpacking tuple assignments in for statements and expr_stmts.
"""
if exprlist.type == 'name':
return {exprlist.value: types}
elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
return unpack_tuple_to_dict(context, types, exprlist.children[1])
elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
'testlist_star_expr'):
dct = {}
parts = iter(exprlist.children[::2])
n = 0
for lazy_value in types.iterate(ContextualizedNode(context, exprlist)):
n += 1
try:
part = next(parts)
except StopIteration:
analysis.add(context, 'value-error-too-many-values', part,
message="ValueError: too many values to unpack (expected %s)" % n)
else:
dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part))
has_parts = next(parts, None)
if types and has_parts is not None:
analysis.add(context, 'value-error-too-few-values', has_parts,
message="ValueError: need more than %s values to unpack" % n)
return dct
elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
# Something like ``arr[x], var = ...``.
# This is something that is not yet supported, would also be difficult
# to write into a dict.
return {}
elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings
# Currently we're not supporting them.
return {}
raise NotImplementedError
class Slice(LazyValueWrapper):
def __init__(self, python_context, start, stop, step):
self.inference_state = python_context.inference_state
self._context = python_context
# All of them are either a Precedence or None.
self._start = start
self._stop = stop
self._step = step
def _get_wrapped_value(self):
value = compiled.builtin_from_name(self._context.inference_state, 'slice')
slice_value, = value.execute_with_values()
return slice_value
def get_safe_value(self, default=sentinel):
"""
Imitate CompiledValue.obj behavior and return a ``builtin.slice()``
object.
"""
def get(element):
if element is None:
return None
result = self._context.infer_node(element)
if len(result) != 1:
# For simplicity, we want slices to be clear defined with just
# one type. Otherwise we will return an empty slice object.
raise IndexError
value, = result
return get_int_or_none(value)
try:
return slice(get(self._start), get(self._stop), get(self._step))
except IndexError:
return slice(None, None, None)