70 lines
2.1 KiB
Python
70 lines
2.1 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""Calculate the perimeter of a glyph."""
|
|
|
|
from fontTools.pens.basePen import BasePen
|
|
from fontTools.misc.bezierTools import (
|
|
approximateQuadraticArcLengthC,
|
|
calcQuadraticArcLengthC,
|
|
approximateCubicArcLengthC,
|
|
calcCubicArcLengthC,
|
|
)
|
|
import math
|
|
|
|
|
|
__all__ = ["PerimeterPen"]
|
|
|
|
|
|
def _distance(p0, p1):
|
|
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
|
|
|
|
|
|
class PerimeterPen(BasePen):
|
|
def __init__(self, glyphset=None, tolerance=0.005):
|
|
BasePen.__init__(self, glyphset)
|
|
self.value = 0
|
|
self.tolerance = tolerance
|
|
|
|
# Choose which algorithm to use for quadratic and for cubic.
|
|
# Quadrature is faster but has fixed error characteristic with no strong
|
|
# error bound. The cutoff points are derived empirically.
|
|
self._addCubic = (
|
|
self._addCubicQuadrature if tolerance >= 0.0015 else self._addCubicRecursive
|
|
)
|
|
self._addQuadratic = (
|
|
self._addQuadraticQuadrature
|
|
if tolerance >= 0.00075
|
|
else self._addQuadraticExact
|
|
)
|
|
|
|
def _moveTo(self, p0):
|
|
self.__startPoint = p0
|
|
|
|
def _closePath(self):
|
|
p0 = self._getCurrentPoint()
|
|
if p0 != self.__startPoint:
|
|
self._lineTo(self.__startPoint)
|
|
|
|
def _lineTo(self, p1):
|
|
p0 = self._getCurrentPoint()
|
|
self.value += _distance(p0, p1)
|
|
|
|
def _addQuadraticExact(self, c0, c1, c2):
|
|
self.value += calcQuadraticArcLengthC(c0, c1, c2)
|
|
|
|
def _addQuadraticQuadrature(self, c0, c1, c2):
|
|
self.value += approximateQuadraticArcLengthC(c0, c1, c2)
|
|
|
|
def _qCurveToOne(self, p1, p2):
|
|
p0 = self._getCurrentPoint()
|
|
self._addQuadratic(complex(*p0), complex(*p1), complex(*p2))
|
|
|
|
def _addCubicRecursive(self, c0, c1, c2, c3):
|
|
self.value += calcCubicArcLengthC(c0, c1, c2, c3, self.tolerance)
|
|
|
|
def _addCubicQuadrature(self, c0, c1, c2, c3):
|
|
self.value += approximateCubicArcLengthC(c0, c1, c2, c3)
|
|
|
|
def _curveToOne(self, p1, p2, p3):
|
|
p0 = self._getCurrentPoint()
|
|
self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))
|