'''tests for weightstats, compares with replication no failures but needs cleanup update 2012-09-09: added test after fixing bug in covariance TODOs: - I do not remember what all the commented out code is doing - should be refactored to use generator or inherited tests - still gaps in test coverage - value/diff in ttest_ind is tested in test_tost.py - what about pandas data structures? Author: Josef Perktold License: BSD (3-clause) ''' import numpy as np from scipy import stats import pandas as pd from numpy.testing import assert_, assert_almost_equal, assert_allclose from statsmodels.stats.weightstats import (DescrStatsW, CompareMeans, ttest_ind, ztest, zconfint) from statsmodels.tools.testing import Holder # Mixin for tests against other packages. class CheckExternalMixin: @classmethod def get_descriptives(cls, ddof=0): cls.descriptive = DescrStatsW(cls.data, cls.weights, ddof) # TODO: not a test, belongs elsewhere? @classmethod def save_data(cls, fname="data.csv"): # Utility to get data into another package. df = pd.DataFrame(index=np.arange(len(cls.weights))) df["weights"] = cls.weights if cls.data.ndim == 1: df["data1"] = cls.data else: for k in range(cls.data.shape[1]): df["data%d" % (k + 1)] = cls.data[:, k] df.to_csv(fname) def test_mean(self): mn = self.descriptive.mean assert_allclose(mn, self.mean, rtol=1e-4) def test_sum(self): sm = self.descriptive.sum assert_allclose(sm, self.sum, rtol=1e-4) def test_var(self): # Use vardef=wgt option in SAS to match var = self.descriptive.var assert_allclose(var, self.var, rtol=1e-4) def test_std(self): # Use vardef=wgt option in SAS to match std = self.descriptive.std assert_allclose(std, self.std, rtol=1e-4) def test_sem(self): # Use default vardef in SAS to match; only makes sense if # weights sum to n. if not hasattr(self, "sem"): return sem = self.descriptive.std_mean assert_allclose(sem, self.sem, rtol=1e-4) def test_quantiles(self): quant = np.asarray(self.quantiles, dtype=np.float64) for return_pandas in False, True: qtl = self.descriptive.quantile(self.quantile_probs, return_pandas=return_pandas) qtl = np.asarray(qtl, dtype=np.float64) assert_allclose(qtl, quant, rtol=1e-4) class TestSim1(CheckExternalMixin): # 1d data # Taken from SAS mean = 0.401499 sum = 12.9553441 var = 1.08022 std = 1.03933 quantiles = np.r_[-1.81098, -0.84052, 0.32859, 0.77808, 2.93431] @classmethod def setup_class(cls): np.random.seed(9876789) cls.data = np.random.normal(size=20) cls.weights = np.random.uniform(0, 3, size=20) cls.quantile_probs = np.r_[0, 0.1, 0.5, 0.75, 1] cls.get_descriptives() class TestSim1t(CheckExternalMixin): # 1d data with ties # Taken from SAS mean = 5.05103296 sum = 156.573464 var = 9.9711934 std = 3.15771965 quantiles = np.r_[0, 1, 5, 8, 9] @classmethod def setup_class(cls): np.random.seed(9876789) cls.data = np.random.randint(0, 10, size=20) cls.data[15:20] = cls.data[0:5] cls.data[18:20] = cls.data[15:17] cls.weights = np.random.uniform(0, 3, size=20) cls.quantile_probs = np.r_[0, 0.1, 0.5, 0.75, 1] cls.get_descriptives() class TestSim1n(CheckExternalMixin): # 1d data with weights summing to n so we can check the standard # error of the mean # Taken from SAS mean = -0.3131058 sum = -6.2621168 var = 0.49722696 std = 0.70514322 sem = 0.15767482 quantiles = np.r_[-1.61593, -1.45576, -0.24356, 0.16770, 1.18791] @classmethod def setup_class(cls): np.random.seed(4342) cls.data = np.random.normal(size=20) cls.weights = np.random.uniform(0, 3, size=20) cls.weights *= 20 / cls.weights.sum() cls.quantile_probs = np.r_[0, 0.1, 0.5, 0.75, 1] cls.get_descriptives(1) class TestSim2(CheckExternalMixin): # 2d data # Taken from SAS mean = [-0.2170406, -0.2387543] sum = [-6.8383999, -7.5225444] var = [1.77426344, 0.61933542] std = [1.3320148, 0.78697867] quantiles = np.column_stack( (np.r_[-2.55277, -1.40479, -0.61040, 0.52740, 2.66246], np.r_[-1.49263, -1.15403, -0.16231, 0.16464, 1.83062])) @classmethod def setup_class(cls): np.random.seed(2249) cls.data = np.random.normal(size=(20, 2)) cls.weights = np.random.uniform(0, 3, size=20) cls.quantile_probs = np.r_[0, 0.1, 0.5, 0.75, 1] cls.get_descriptives() class TestWeightstats: @classmethod def setup_class(cls): np.random.seed(9876789) n1, n2 = 20, 20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1) x2 = m2 + np.random.randn(n2) x1_2d = m1 + np.random.randn(n1, 3) x2_2d = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) cls.x1, cls.x2 = x1, x2 cls.w1, cls.w2 = w1, w2 cls.x1_2d, cls.x2_2d = x1_2d, x2_2d def test_weightstats_1(self): x1, x2 = self.x1, self.x2 w1, w2 = self.w1, self.w2 w1_ = 2. * np.ones(len(x1)) w2_ = 2. * np.ones(len(x2)) d1 = DescrStatsW(x1) # print ttest_ind(x1, x2) # print ttest_ind(x1, x2, usevar='unequal') # #print ttest_ind(x1, x2, usevar='unequal') # print stats.ttest_ind(x1, x2) # print ttest_ind(x1, x2, usevar='unequal', alternative='larger') # print ttest_ind(x1, x2, usevar='unequal', alternative='smaller') # print ttest_ind(x1, x2, usevar='unequal', weights=(w1_, w2_)) # print stats.ttest_ind(np.r_[x1, x1], np.r_[x2,x2]) assert_almost_equal(ttest_ind(x1, x2, weights=(w1_, w2_))[:2], stats.ttest_ind(np.r_[x1, x1], np.r_[x2, x2])) def test_weightstats_2(self): x1, x2 = self.x1, self.x2 w1, w2 = self.w1, self.w2 d1 = DescrStatsW(x1) d1w = DescrStatsW(x1, weights=w1) d2w = DescrStatsW(x2, weights=w2) x1r = d1w.asrepeats() x2r = d2w.asrepeats() # print 'random weights' # print ttest_ind(x1, x2, weights=(w1, w2)) # print stats.ttest_ind(x1r, x2r) assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], stats.ttest_ind(x1r, x2r), 14) # not the same as new version with random weights/replication # assert x1r.shape[0] == d1w.sum_weights # assert x2r.shape[0] == d2w.sum_weights assert_almost_equal(x2r.mean(0), d2w.mean, 14) assert_almost_equal(x2r.var(), d2w.var, 14) assert_almost_equal(x2r.std(), d2w.std, 14) # note: the following is for 1d assert_almost_equal(np.cov(x2r, bias=1), d2w.cov, 14) # assert_almost_equal(np.corrcoef(np.x2r), d2w.corrcoef, 19) # TODO: exception in corrcoef (scalar case) # one-sample tests # print d1.ttest_mean(3) # print stats.ttest_1samp(x1, 3) # print d1w.ttest_mean(3) # print stats.ttest_1samp(x1r, 3) assert_almost_equal(d1.ttest_mean(3)[:2], stats.ttest_1samp(x1, 3), 11) assert_almost_equal(d1w.ttest_mean(3)[:2], stats.ttest_1samp(x1r, 3), 11) def test_weightstats_3(self): x1_2d, x2_2d = self.x1_2d, self.x2_2d w1, w2 = self.w1, self.w2 d1w_2d = DescrStatsW(x1_2d, weights=w1) d2w_2d = DescrStatsW(x2_2d, weights=w2) x1r_2d = d1w_2d.asrepeats() x2r_2d = d2w_2d.asrepeats() assert_almost_equal(x2r_2d.mean(0), d2w_2d.mean, 14) assert_almost_equal(x2r_2d.var(0), d2w_2d.var, 14) assert_almost_equal(x2r_2d.std(0), d2w_2d.std, 14) assert_almost_equal(np.cov(x2r_2d.T, bias=1), d2w_2d.cov, 14) assert_almost_equal(np.corrcoef(x2r_2d.T), d2w_2d.corrcoef, 14) # print d1w_2d.ttest_mean(3) # #scipy.stats.ttest is also vectorized # print stats.ttest_1samp(x1r_2d, 3) t, p, d = d1w_2d.ttest_mean(3) assert_almost_equal([t, p], stats.ttest_1samp(x1r_2d, 3), 11) # print [stats.ttest_1samp(xi, 3) for xi in x1r_2d.T] cm = CompareMeans(d1w_2d, d2w_2d) ressm = cm.ttest_ind() resss = stats.ttest_ind(x1r_2d, x2r_2d) assert_almost_equal(ressm[:2], resss, 14) # does not work for 2d, levene does not use weights # cm = CompareMeans(d1w_2d, d2w_2d) # ressm = cm.test_equal_var() # resss = stats.levene(x1r_2d, x2r_2d) # assert_almost_equal(ressm[:2], resss, 14) def test_weightstats_ddof_tests(self): # explicit test that ttest and confint are independent of ddof # one sample case x1_2d = self.x1_2d w1 = self.w1 d1w_d0 = DescrStatsW(x1_2d, weights=w1, ddof=0) d1w_d1 = DescrStatsW(x1_2d, weights=w1, ddof=1) d1w_d2 = DescrStatsW(x1_2d, weights=w1, ddof=2) # check confint independent of user ddof res0 = d1w_d0.ttest_mean() res1 = d1w_d1.ttest_mean() res2 = d1w_d2.ttest_mean() # concatenate into one array with np.r_ assert_almost_equal(np.r_[res1], np.r_[res0], 14) assert_almost_equal(np.r_[res2], np.r_[res0], 14) res0 = d1w_d0.ttest_mean(0.5) res1 = d1w_d1.ttest_mean(0.5) res2 = d1w_d2.ttest_mean(0.5) assert_almost_equal(np.r_[res1], np.r_[res0], 14) assert_almost_equal(np.r_[res2], np.r_[res0], 14) # check confint independent of user ddof res0 = d1w_d0.tconfint_mean() res1 = d1w_d1.tconfint_mean() res2 = d1w_d2.tconfint_mean() assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) def test_comparemeans_convenient_interface(self): x1_2d, x2_2d = self.x1_2d, self.x2_2d d1 = DescrStatsW(x1_2d) d2 = DescrStatsW(x2_2d) cm1 = CompareMeans(d1, d2) # smoke test for summary from statsmodels.iolib.table import SimpleTable for use_t in [True, False]: for usevar in ['pooled', 'unequal']: smry = cm1.summary(use_t=use_t, usevar=usevar) assert_(isinstance(smry, SimpleTable)) # test for from_data method cm2 = CompareMeans.from_data(x1_2d, x2_2d) assert_(str(cm1.summary()) == str(cm2.summary())) def test_comparemeans_convenient_interface_1d(self): # same as above for 2d, just use 1d data instead x1_2d, x2_2d = self.x1, self.x2 d1 = DescrStatsW(x1_2d) d2 = DescrStatsW(x2_2d) cm1 = CompareMeans(d1, d2) # smoke test for summary from statsmodels.iolib.table import SimpleTable for use_t in [True, False]: for usevar in ['pooled', 'unequal']: smry = cm1.summary(use_t=use_t, usevar=usevar) assert_(isinstance(smry, SimpleTable)) # test for from_data method cm2 = CompareMeans.from_data(x1_2d, x2_2d) assert_(str(cm1.summary()) == str(cm2.summary())) class CheckWeightstats1dMixin: def test_basic(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(x1r.mean(0), d1w.mean, 14) assert_almost_equal(x1r.var(0, ddof=d1w.ddof), d1w.var, 14) assert_almost_equal(x1r.std(0, ddof=d1w.ddof), d1w.std, 14) var1 = d1w.var_ddof(ddof=1) assert_almost_equal(x1r.var(0, ddof=1), var1, 14) std1 = d1w.std_ddof(ddof=1) assert_almost_equal(x1r.std(0, ddof=1), std1, 14) assert_almost_equal(np.cov(x1r.T, bias=1-d1w.ddof), d1w.cov, 14) # assert_almost_equal(np.corrcoef(x1r.T), d1w.corrcoef, 14) def test_ttest(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(d1w.ttest_mean(3)[:2], stats.ttest_1samp(x1r, 3), 11) # def # assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], # stats.ttest_ind(x1r, x2r), 14) def test_ttest_2sample(self): x1, x2 = self.x1, self.x2 x1r, x2r = self.x1r, self.x2r w1, w2 = self.w1, self.w2 # Note: stats.ttest_ind handles 2d/nd arguments res_sp = stats.ttest_ind(x1r, x2r) assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], res_sp, 14) # check correct ttest independent of user ddof cm = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=1)) assert_almost_equal(cm.ttest_ind()[:2], res_sp, 14) cm = CompareMeans(DescrStatsW(x1, weights=w1, ddof=1), DescrStatsW(x2, weights=w2, ddof=2)) assert_almost_equal(cm.ttest_ind()[:2], res_sp, 14) cm0 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=0)) cm1 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=1)) cm2 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=1), DescrStatsW(x2, weights=w2, ddof=2)) res0 = cm0.ttest_ind(usevar='unequal') res1 = cm1.ttest_ind(usevar='unequal') res2 = cm2.ttest_ind(usevar='unequal') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) # check confint independent of user ddof res0 = cm0.tconfint_diff(usevar='pooled') res1 = cm1.tconfint_diff(usevar='pooled') res2 = cm2.tconfint_diff(usevar='pooled') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) res0 = cm0.tconfint_diff(usevar='unequal') res1 = cm1.tconfint_diff(usevar='unequal') res2 = cm2.tconfint_diff(usevar='unequal') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) def test_confint_mean(self): # compare confint_mean with ttest d1w = self.d1w alpha = 0.05 low, upp = d1w.tconfint_mean() t, p, d = d1w.ttest_mean(low) assert_almost_equal(p, alpha * np.ones(p.shape), 8) t, p, d = d1w.ttest_mean(upp) assert_almost_equal(p, alpha * np.ones(p.shape), 8) t, p, d = d1w.ttest_mean(np.vstack((low, upp))) assert_almost_equal(p, alpha * np.ones(p.shape), 8) class CheckWeightstats2dMixin(CheckWeightstats1dMixin): def test_corr(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(np.corrcoef(x1r.T), d1w.corrcoef, 14) class TestWeightstats1d_ddof(CheckWeightstats1dMixin): @classmethod def setup_class(cls): np.random.seed(9876789) n1, n2 = 20, 20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 1) x2 = m2 + np.random.randn(n2, 1) w1 = np.random.randint(1, 4, n1) w2 = np.random.randint(1, 4, n2) cls.x1, cls.x2 = x1, x2 cls.w1, cls.w2 = w1, w2 cls.d1w = DescrStatsW(x1, weights=w1, ddof=1) cls.d2w = DescrStatsW(x2, weights=w2, ddof=1) cls.x1r = cls.d1w.asrepeats() cls.x2r = cls.d2w.asrepeats() class TestWeightstats2d(CheckWeightstats2dMixin): @classmethod def setup_class(cls): np.random.seed(9876789) n1, n2 = 20, 20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1, 4, n1) w2 = np.random.randint(1, 4, n2) cls.x1, cls.x2 = x1, x2 cls.w1, cls.w2 = w1, w2 cls.d1w = DescrStatsW(x1, weights=w1) cls.d2w = DescrStatsW(x2, weights=w2) cls.x1r = cls.d1w.asrepeats() cls.x2r = cls.d2w.asrepeats() class TestWeightstats2d_ddof(CheckWeightstats2dMixin): @classmethod def setup_class(cls): np.random.seed(9876789) n1, n2 = 20, 20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1, 4, n1) w2 = np.random.randint(1, 4, n2) cls.x1, cls.x2 = x1, x2 cls.w1, cls.w2 = w1, w2 cls.d1w = DescrStatsW(x1, weights=w1, ddof=1) cls.d2w = DescrStatsW(x2, weights=w2, ddof=1) cls.x1r = cls.d1w.asrepeats() cls.x2r = cls.d2w.asrepeats() class TestWeightstats2d_nobs(CheckWeightstats2dMixin): @classmethod def setup_class(cls): np.random.seed(9876789) n1, n2 = 20, 30 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1, 4, n1) w2 = np.random.randint(1, 4, n2) cls.x1, cls.x2 = x1, x2 cls.w1, cls.w2 = w1, w2 cls.d1w = DescrStatsW(x1, weights=w1, ddof=0) cls.d2w = DescrStatsW(x2, weights=w2, ddof=1) cls.x1r = cls.d1w.asrepeats() cls.x2r = cls.d2w.asrepeats() def test_ttest_ind_with_uneq_var(): # from scipy # check vs. R a = (1, 2, 3) b = (1.1, 2.9, 4.2) pr = 0.53619490753126731 tr = -0.68649512735572582 t, p, df = ttest_ind(a, b, usevar='unequal') assert_almost_equal([t, p], [tr, pr], 13) a = (1, 2, 3, 4) pr = 0.84354139131608286 tr = -0.2108663315950719 t, p, df = ttest_ind(a, b, usevar='unequal') assert_almost_equal([t, p], [tr, pr], 13) def test_ztest_ztost(): # compare weightstats with separately tested proportion ztest ztost import statsmodels.stats.proportion as smprop x1 = [0, 1] w1 = [5, 15] res2 = smprop.proportions_ztest(15, 20., value=0.5) d1 = DescrStatsW(x1, w1) res1 = d1.ztest_mean(0.5) assert_allclose(res1, res2, rtol=0.03, atol=0.003) d2 = DescrStatsW(x1, np.array(w1)*21./20) res1 = d2.ztest_mean(0.5) assert_almost_equal(res1, res2, decimal=12) res1 = d2.ztost_mean(0.4, 0.6) res2 = smprop.proportions_ztost(15, 20., 0.4, 0.6) assert_almost_equal(res1[0], res2[0], decimal=12) x2 = [0, 1] w2 = [10, 10] # d2 = DescrStatsW(x1, np.array(w1)*21./20) d2 = DescrStatsW(x2, w2) res1 = ztest(d1.asrepeats(), d2.asrepeats()) res2 = smprop.proportions_chisquare(np.asarray([15, 10]), np.asarray([20., 20])) # TODO: check this is this difference expected?, see test_proportion assert_allclose(res1[1], res2[1], rtol=0.03) res1a = CompareMeans(d1, d2).ztest_ind() assert_allclose(res1a[1], res2[1], rtol=0.03) assert_almost_equal(res1a, res1, decimal=12) # test for ztest and z confidence interval against R BSDA z.test # Note: I needed to calculate the pooled standard deviation for R # std = np.std(np.concatenate((x-x.mean(),y-y.mean())), ddof=2) # > zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667) # > cat_items(zt, "ztest.") ztest_ = Holder() ztest_.statistic = 6.55109865675183 ztest_.p_value = 5.711530850508982e-11 ztest_.conf_int = np.array([1.230415246535603, 2.280948389828034]) ztest_.estimate = np.array([7.01818181818182, 5.2625]) ztest_.null_value = 0 ztest_.alternative = 'two.sided' ztest_.method = 'Two-sample z-Test' ztest_.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.57676142668828667, y, # sigma.y=0.57676142668828667, alternative="less") # > cat_items(zt, "ztest_smaller.") ztest_smaller = Holder() ztest_smaller.statistic = 6.55109865675183 ztest_smaller.p_value = 0.999999999971442 ztest_smaller.conf_int = np.array([np.nan, 2.196499421109045]) ztest_smaller.estimate = np.array([7.01818181818182, 5.2625]) ztest_smaller.null_value = 0 ztest_smaller.alternative = 'less' ztest_smaller.method = 'Two-sample z-Test' ztest_smaller.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.57676142668828667, y, # sigma.y=0.57676142668828667, alternative="greater") # > cat_items(zt, "ztest_larger.") ztest_larger = Holder() ztest_larger.statistic = 6.55109865675183 ztest_larger.p_value = 2.855760072861813e-11 ztest_larger.conf_int = np.array([1.314864215254592, np.nan]) ztest_larger.estimate = np.array([7.01818181818182, 5.2625]) ztest_larger.null_value = 0 ztest_larger.alternative = 'greater' ztest_larger.method = 'Two-sample z-Test' ztest_larger.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.57676142668828667, y, # sigma.y=0.57676142668828667, mu=1, alternative="two.sided") # > cat_items(zt, "ztest_mu.") ztest_mu = Holder() ztest_mu.statistic = 2.81972854805176 ztest_mu.p_value = 0.00480642898427981 ztest_mu.conf_int = np.array([1.230415246535603, 2.280948389828034]) ztest_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_mu.null_value = 1 ztest_mu.alternative = 'two.sided' ztest_mu.method = 'Two-sample z-Test' ztest_mu.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.57676142668828667, y, # sigma.y=0.57676142668828667, mu=1, alternative="greater") # > cat_items(zt, "ztest_larger_mu.") ztest_larger_mu = Holder() ztest_larger_mu.statistic = 2.81972854805176 ztest_larger_mu.p_value = 0.002403214492139871 ztest_larger_mu.conf_int = np.array([1.314864215254592, np.nan]) ztest_larger_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_larger_mu.null_value = 1 ztest_larger_mu.alternative = 'greater' ztest_larger_mu.method = 'Two-sample z-Test' ztest_larger_mu.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.57676142668828667, y, # sigma.y=0.57676142668828667, mu=2, alternative="less") # > cat_items(zt, "ztest_smaller_mu.") ztest_smaller_mu = Holder() ztest_smaller_mu.statistic = -0.911641560648313 ztest_smaller_mu.p_value = 0.1809787183191324 ztest_smaller_mu.conf_int = np.array([np.nan, 2.196499421109045]) ztest_smaller_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_smaller_mu.null_value = 2 ztest_smaller_mu.alternative = 'less' ztest_smaller_mu.method = 'Two-sample z-Test' ztest_smaller_mu.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.46436662631627995, mu=6.4, # alternative="two.sided") # > cat_items(zt, "ztest_mu_1s.") ztest_mu_1s = Holder() ztest_mu_1s.statistic = 4.415212090914452 ztest_mu_1s.p_value = 1.009110038015147e-05 ztest_mu_1s.conf_int = np.array([6.74376372125119, 7.29259991511245]) ztest_mu_1s.estimate = 7.01818181818182 ztest_mu_1s.null_value = 6.4 ztest_mu_1s.alternative = 'two.sided' ztest_mu_1s.method = 'One-sample z-Test' ztest_mu_1s.data_name = 'x' # > zt = z.test(x, sigma.x=0.46436662631627995, mu=7.4, alternative="less") # > cat_items(zt, "ztest_smaller_mu_1s.") ztest_smaller_mu_1s = Holder() ztest_smaller_mu_1s.statistic = -2.727042762035397 ztest_smaller_mu_1s.p_value = 0.00319523783881176 ztest_smaller_mu_1s.conf_int = np.array([np.nan, 7.248480744895716]) ztest_smaller_mu_1s.estimate = 7.01818181818182 ztest_smaller_mu_1s.null_value = 7.4 ztest_smaller_mu_1s.alternative = 'less' ztest_smaller_mu_1s.method = 'One-sample z-Test' ztest_smaller_mu_1s.data_name = 'x' # > zt = z.test(x, sigma.x=0.46436662631627995, mu=6.4, alternative="greater") # > cat_items(zt, "ztest_greater_mu_1s.") ztest_larger_mu_1s = Holder() ztest_larger_mu_1s.statistic = 4.415212090914452 ztest_larger_mu_1s.p_value = 5.045550190097003e-06 ztest_larger_mu_1s.conf_int = np.array([6.78788289146792, np.nan]) ztest_larger_mu_1s.estimate = 7.01818181818182 ztest_larger_mu_1s.null_value = 6.4 ztest_larger_mu_1s.alternative = 'greater' ztest_larger_mu_1s.method = 'One-sample z-Test' ztest_larger_mu_1s.data_name = 'x' # > zt = z.test(x, sigma.x=0.46436662631627995, y, sigma.y=0.7069805008424409) # > cat_items(zt, "ztest_unequal.") ztest_unequal = Holder() ztest_unequal.statistic = 6.12808151466544 ztest_unequal.p_value = 8.89450168270109e-10 ztest_unequal.conf_int = np.array([1.19415646579981, 2.31720717056382]) ztest_unequal.estimate = np.array([7.01818181818182, 5.2625]) ztest_unequal.null_value = 0 ztest_unequal.alternative = 'two.sided' ztest_unequal.usevar = 'unequal' ztest_unequal.method = 'Two-sample z-Test' ztest_unequal.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.46436662631627995, y, sigma.y=0.7069805008424409, alternative="less") # > cat_items(zt, "ztest_smaller_unequal.") ztest_smaller_unequal = Holder() ztest_smaller_unequal.statistic = 6.12808151466544 ztest_smaller_unequal.p_value = 0.999999999555275 ztest_smaller_unequal.conf_int = np.array([np.nan, 2.22692874913371]) ztest_smaller_unequal.estimate = np.array([7.01818181818182, 5.2625]) ztest_smaller_unequal.null_value = 0 ztest_smaller_unequal.alternative = 'less' ztest_smaller_unequal.usevar = 'unequal' ztest_smaller_unequal.method = 'Two-sample z-Test' ztest_smaller_unequal.data_name = 'x and y' # > zt = z.test(x, sigma.x=0.46436662631627995, y, sigma.y=0.7069805008424409, alternative="greater") # > cat_items(zt, "ztest_larger_unequal.") ztest_larger_unequal = Holder() ztest_larger_unequal.statistic = 6.12808151466544 ztest_larger_unequal.p_value = 4.44725034576265e-10 ztest_larger_unequal.conf_int = np.array([1.28443488722992, np.nan]) ztest_larger_unequal.estimate = np.array([7.01818181818182, 5.2625]) ztest_larger_unequal.null_value = 0 ztest_larger_unequal.alternative = 'greater' ztest_larger_unequal.usevar = 'unequal' ztest_larger_unequal.method = 'Two-sample z-Test' ztest_larger_unequal.data_name = 'x and y' alternatives = {'less': 'smaller', 'greater': 'larger', 'two.sided': 'two-sided'} class TestZTest: # all examples use the same data # no weights used in tests @classmethod def setup_class(cls): cls.x1 = np.array([7.8, 6.6, 6.5, 7.4, 7.3, 7., 6.4, 7.1, 6.7, 7.6, 6.8]) cls.x2 = np.array([4.5, 5.4, 6.1, 6.1, 5.4, 5., 4.1, 5.5]) cls.d1 = DescrStatsW(cls.x1) cls.d2 = DescrStatsW(cls.x2) cls.cm = CompareMeans(cls.d1, cls.d2) def test(self): x1, x2 = self.x1, self.x2 cm = self.cm # tc : test cases for tc in [ztest_, ztest_smaller, ztest_larger, ztest_mu, ztest_smaller_mu, ztest_larger_mu]: zstat, pval = ztest(x1, x2, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) zstat, pval = cm.ztest_ind(value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) # overwrite nan in R's confint tc_conf_int = tc.conf_int.copy() if np.isnan(tc_conf_int[0]): tc_conf_int[0] = - np.inf if np.isnan(tc_conf_int[1]): tc_conf_int[1] = np.inf # Note: value is shifting our confidence interval in zconfint ci = zconfint(x1, x2, value=0, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = cm.zconfint_diff(alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = zconfint(x1, x2, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int - tc.null_value, rtol=1e-10) # unequal variances for tc in [ztest_unequal, ztest_smaller_unequal, ztest_larger_unequal]: zstat, pval = ztest(x1, x2, value=tc.null_value, alternative=alternatives[tc.alternative], usevar="unequal") assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) # 1 sample test copy-paste d1 = self.d1 for tc in [ztest_mu_1s, ztest_smaller_mu_1s, ztest_larger_mu_1s]: zstat, pval = ztest(x1, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) zstat, pval = d1.ztest_mean(value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) # overwrite nan in R's confint tc_conf_int = tc.conf_int.copy() if np.isnan(tc_conf_int[0]): tc_conf_int[0] = - np.inf if np.isnan(tc_conf_int[1]): tc_conf_int[1] = np.inf # Note: value is shifting our confidence interval in zconfint ci = zconfint(x1, value=0, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = d1.zconfint_mean(alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) def test_weightstats_len_1(): x1 = [1] w1 = [1] d1 = DescrStatsW(x1, w1) assert (d1.quantile([0.0, 0.5, 1.0]) == 1).all() def test_weightstats_2d_w1(): x1 = [[1], [2]] w1 = [[1], [2]] d1 = DescrStatsW(x1, w1) print(len(np.array(w1).shape)) assert (d1.quantile([0.5, 1.0]) == 2).all().all() def test_weightstats_2d_w2(): x1 = [[1]] w1 = [[1]] d1 = DescrStatsW(x1, w1) assert (d1.quantile([0, 0.5, 1.0]) == 1).all().all()