""" Support and standalone functions for Robust Linear Models References ---------- PJ Huber. 'Robust Statistics' John Wiley and Sons, Inc., New York, 1981. R Venables, B Ripley. 'Modern Applied Statistics in S' Springer, New York, 2002. C Croux, PJ Rousseeuw, 'Time-efficient algorithms for two highly robust estimators of scale' Computational statistics. Physica, Heidelberg, 1992. """ import numpy as np from scipy.stats import norm as Gaussian from statsmodels.tools import tools from statsmodels.tools.validation import array_like, float_like from . import norms from ._qn import _qn def mad(a, c=Gaussian.ppf(3 / 4.0), axis=0, center=np.median): """ The Median Absolute Deviation along given axis of an array Parameters ---------- a : array_like Input array. c : float, optional The normalization constant. Defined as scipy.stats.norm.ppf(3/4.), which is approximately 0.6745. axis : int, optional The default is 0. Can also be None. center : callable or float If a callable is provided, such as the default `np.median` then it is expected to be called center(a). The axis argument will be applied via np.apply_over_axes. Otherwise, provide a float. Returns ------- mad : float `mad` = median(abs(`a` - center))/`c` """ a = array_like(a, "a", ndim=None) c = float_like(c, "c") if not a.size: center_val = 0.0 elif callable(center): if axis is not None: center_val = np.apply_over_axes(center, a, axis) else: center_val = center(a.ravel()) else: center_val = float_like(center, "center") err = (np.abs(a - center_val)) / c if not err.size: if axis is None or err.ndim == 1: return np.nan else: shape = list(err.shape) shape.pop(axis) return np.empty(shape) return np.median(err, axis=axis) def iqr(a, c=Gaussian.ppf(3 / 4) - Gaussian.ppf(1 / 4), axis=0): """ The normalized interquartile range along given axis of an array Parameters ---------- a : array_like Input array. c : float, optional The normalization constant, used to get consistent estimates of the standard deviation at the normal distribution. Defined as scipy.stats.norm.ppf(3/4.) - scipy.stats.norm.ppf(1/4.), which is approximately 1.349. axis : int, optional The default is 0. Can also be None. Returns ------- The normalized interquartile range """ a = array_like(a, "a", ndim=None) c = float_like(c, "c") if a.ndim == 0: raise ValueError("a should have at least one dimension") elif a.size == 0: return np.nan else: quantiles = np.quantile(a, [0.25, 0.75], axis=axis) return np.squeeze(np.diff(quantiles, axis=0) / c) def qn_scale(a, c=1 / (np.sqrt(2) * Gaussian.ppf(5 / 8)), axis=0): """ Computes the Qn robust estimator of scale The Qn scale estimator is a more efficient alternative to the MAD. The Qn scale estimator of an array a of length n is defined as c * {abs(a[i] - a[j]): i>> import numpy as np >>> import statsmodels.api as sm >>> chem_data = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, ... 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7, ... 3.77, 5.28, 28.95]) >>> sm.robust.scale.huber(chem_data) (array(3.2054980819923693), array(0.67365260010478967)) """ def __init__(self, c=1.5, tol=1.0e-08, maxiter=30, norm=None): self.c = c self.maxiter = maxiter self.tol = tol self.norm = norm tmp = 2 * Gaussian.cdf(c) - 1 self.gamma = tmp + c ** 2 * (1 - tmp) - 2 * c * Gaussian.pdf(c) def __call__(self, a, mu=None, initscale=None, axis=0): """ Compute Huber's proposal 2 estimate of scale, using an optional initial value of scale and an optional estimate of mu. If mu is supplied, it is not reestimated. Parameters ---------- a : ndarray 1d array mu : float or None, optional If the location mu is supplied then it is not reestimated. Default is None, which means that it is estimated. initscale : float or None, optional A first guess on scale. If initscale is None then the standardized median absolute deviation of a is used. Notes ----- `Huber` minimizes the function sum(psi((a[i]-mu)/scale)**2) as a function of (mu, scale), where psi(x) = np.clip(x, -self.c, self.c) """ a = np.asarray(a) if mu is None: n = a.shape[0] - 1 mu = np.median(a, axis=axis) est_mu = True else: n = a.shape[0] mu = mu est_mu = False if initscale is None: scale = mad(a, axis=axis) else: scale = initscale scale = tools.unsqueeze(scale, axis, a.shape) mu = tools.unsqueeze(mu, axis, a.shape) return self._estimate_both(a, scale, mu, axis, est_mu, n) def _estimate_both(self, a, scale, mu, axis, est_mu, n): """ Estimate scale and location simultaneously with the following pseudo_loop: while not_converged: mu, scale = estimate_location(a, scale, mu), estimate_scale(a, scale, mu) where estimate_location is an M-estimator and estimate_scale implements the check used in Section 5.5 of Venables & Ripley """ # noqa:E501 for _ in range(self.maxiter): # Estimate the mean along a given axis if est_mu: if self.norm is None: # This is a one-step fixed-point estimator # if self.norm == norms.HuberT # It should be faster than using norms.HuberT nmu = ( np.clip( a, mu - self.c * scale, mu + self.c * scale ).sum(axis) / a.shape[axis] ) else: nmu = norms.estimate_location( a, scale, self.norm, axis, mu, self.maxiter, self.tol ) else: # Effectively, do nothing nmu = mu.squeeze() nmu = tools.unsqueeze(nmu, axis, a.shape) subset = np.less_equal(np.abs((a - mu) / scale), self.c) card = subset.sum(axis) scale_num = np.sum(subset * (a - nmu) ** 2, axis) scale_denom = n * self.gamma - (a.shape[axis] - card) * self.c ** 2 nscale = np.sqrt(scale_num / scale_denom) nscale = tools.unsqueeze(nscale, axis, a.shape) test1 = np.all( np.less_equal(np.abs(scale - nscale), nscale * self.tol) ) test2 = np.all( np.less_equal(np.abs(mu - nmu), nscale * self.tol) ) if not (test1 and test2): mu = nmu scale = nscale else: return nmu.squeeze(), nscale.squeeze() raise ValueError( "joint estimation of location and scale failed " "to converge in %d iterations" % self.maxiter ) huber = Huber() class HuberScale: r""" Huber's scaling for fitting robust linear models. Huber's scale is intended to be used as the scale estimate in the IRLS algorithm and is slightly different than the `Huber` class. Parameters ---------- d : float, optional d is the tuning constant for Huber's scale. Default is 2.5 tol : float, optional The convergence tolerance maxiter : int, optiona The maximum number of iterations. The default is 30. Methods ------- call Return's Huber's scale computed as below Notes ----- Huber's scale is the iterative solution to scale_(i+1)**2 = 1/(n*h)*sum(chi(r/sigma_i)*sigma_i**2 where the Huber function is chi(x) = (x**2)/2 for \|x\| < d chi(x) = (d**2)/2 for \|x\| >= d and the Huber constant h = (n-p)/n*(d**2 + (1-d**2)* scipy.stats.norm.cdf(d) - .5 - d*sqrt(2*pi)*exp(-0.5*d**2) """ def __init__(self, d=2.5, tol=1e-08, maxiter=30): self.d = d self.tol = tol self.maxiter = maxiter def __call__(self, df_resid, nobs, resid): h = ( df_resid / nobs * ( self.d ** 2 + (1 - self.d ** 2) * Gaussian.cdf(self.d) - 0.5 - self.d / (np.sqrt(2 * np.pi)) * np.exp(-0.5 * self.d ** 2) ) ) s = mad(resid) def subset(x): return np.less(np.abs(resid / x), self.d) def chi(s): return subset(s) * (resid / s) ** 2 / 2 + (1 - subset(s)) * ( self.d ** 2 / 2 ) scalehist = [np.inf, s] niter = 1 while ( np.abs(scalehist[niter - 1] - scalehist[niter]) > self.tol and niter < self.maxiter ): nscale = np.sqrt( 1 / (nobs * h) * np.sum(chi(scalehist[-1])) * scalehist[-1] ** 2 ) scalehist.append(nscale) niter += 1 # TODO: raise on convergence failure? return scalehist[-1] hubers_scale = HuberScale()