#### Convenience Functions to be moved to kerneltools #### import numpy as np def forrt(X, m=None): """ RFFT with order like Munro (1976) FORTT routine. """ if m is None: m = len(X) y = np.fft.rfft(X, m) / m return np.r_[y.real, y[1:-1].imag] def revrt(X, m=None): """ Inverse of forrt. Equivalent to Munro (1976) REVRT routine. """ if m is None: m = len(X) i = int(m // 2 + 1) y = X[:i] + np.r_[0, X[i:], 0] * 1j return np.fft.irfft(y)*m def silverman_transform(bw, M, RANGE): """ FFT of Gaussian kernel following to Silverman AS 176. Notes ----- Underflow is intentional as a dampener. """ J = np.arange(M/2+1) FAC1 = 2*(np.pi*bw/RANGE)**2 JFAC = J**2*FAC1 BC = 1 - 1. / 3 * (J * 1./M*np.pi)**2 FAC = np.exp(-JFAC)/BC kern_est = np.r_[FAC, FAC[1:-1]] return kern_est def counts(x, v): """ Counts the number of elements of x that fall within the grid points v Notes ----- Using np.digitize and np.bincount """ idx = np.digitize(x, v) try: # numpy 1.6 return np.bincount(idx, minlength=len(v)) except: bc = np.bincount(idx) return np.r_[bc, np.zeros(len(v) - len(bc))] def kdesum(x, axis=0): return np.asarray([np.sum(x[i] - x, axis) for i in range(len(x))])