"""Fair's Extramarital Affairs Data""" from statsmodels.datasets import utils as du __docformat__ = 'restructuredtext' COPYRIGHT = """Included with permission of the author.""" TITLE = """Affairs dataset""" SOURCE = """ Fair, Ray. 1978. "A Theory of Extramarital Affairs," `Journal of Political Economy`, February, 45-61. The data is available at http://fairmodel.econ.yale.edu/rayfair/pdf/2011b.htm """ DESCRSHORT = """Extramarital affair data.""" DESCRLONG = """Extramarital affair data used to explain the allocation of an individual's time among work, time spent with a spouse, and time spent with a paramour. The data is used as an example of regression with censored data.""" #suggested notes NOTE = """:: Number of observations: 6366 Number of variables: 9 Variable name definitions: rate_marriage : How rate marriage, 1 = very poor, 2 = poor, 3 = fair, 4 = good, 5 = very good age : Age yrs_married : No. years married. Interval approximations. See original paper for detailed explanation. children : No. children religious : How relgious, 1 = not, 2 = mildly, 3 = fairly, 4 = strongly educ : Level of education, 9 = grade school, 12 = high school, 14 = some college, 16 = college graduate, 17 = some graduate school, 20 = advanced degree occupation : 1 = student, 2 = farming, agriculture; semi-skilled, or unskilled worker; 3 = white-colloar; 4 = teacher counselor social worker, nurse; artist, writers; technician, skilled worker, 5 = managerial, administrative, business, 6 = professional with advanced degree occupation_husb : Husband's occupation. Same as occupation. affairs : measure of time spent in extramarital affairs See the original paper for more details. """ def load(): """ Load the data and return a Dataset class instance. Returns ------- Dataset See DATASET_PROPOSAL.txt for more information. """ return load_pandas() def load_pandas(): data = _get_data() return du.process_pandas(data, endog_idx=8, exog_idx=None) def _get_data(): return du.load_csv(__file__, 'fair.csv', convert_float=True)