from functools import partial import warnings import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.cbook import normalize_kwargs from ._base import ( VectorPlotter, ) from .utils import ( adjust_legend_subtitles, _default_color, _deprecate_ci, _get_transform_functions, _scatter_legend_artist, ) from ._compat import groupby_apply_include_groups from ._statistics import EstimateAggregator, WeightedAggregator from .axisgrid import FacetGrid, _facet_docs from ._docstrings import DocstringComponents, _core_docs __all__ = ["relplot", "scatterplot", "lineplot"] _relational_narrative = DocstringComponents(dict( # --- Introductory prose main_api=""" The relationship between `x` and `y` can be shown for different subsets of the data using the `hue`, `size`, and `style` parameters. These parameters control what visual semantics are used to identify the different subsets. It is possible to show up to three dimensions independently by using all three semantic types, but this style of plot can be hard to interpret and is often ineffective. Using redundant semantics (i.e. both `hue` and `style` for the same variable) can be helpful for making graphics more accessible. See the :ref:`tutorial ` for more information. """, relational_semantic=""" The default treatment of the `hue` (and to a lesser extent, `size`) semantic, if present, depends on whether the variable is inferred to represent "numeric" or "categorical" data. In particular, numeric variables are represented with a sequential colormap by default, and the legend entries show regular "ticks" with values that may or may not exist in the data. This behavior can be controlled through various parameters, as described and illustrated below. """, )) _relational_docs = dict( # --- Shared function parameters data_vars=""" x, y : names of variables in `data` or vector data Input data variables; must be numeric. Can pass data directly or reference columns in `data`. """, data=""" data : DataFrame, array, or list of arrays Input data structure. If `x` and `y` are specified as names, this should be a "long-form" DataFrame containing those columns. Otherwise it is treated as "wide-form" data and grouping variables are ignored. See the examples for the various ways this parameter can be specified and the different effects of each. """, palette=""" palette : string, list, dict, or matplotlib colormap An object that determines how colors are chosen when `hue` is used. It can be the name of a seaborn palette or matplotlib colormap, a list of colors (anything matplotlib understands), a dict mapping levels of the `hue` variable to colors, or a matplotlib colormap object. """, hue_order=""" hue_order : list Specified order for the appearance of the `hue` variable levels, otherwise they are determined from the data. Not relevant when the `hue` variable is numeric. """, hue_norm=""" hue_norm : tuple or :class:`matplotlib.colors.Normalize` object Normalization in data units for colormap applied to the `hue` variable when it is numeric. Not relevant if `hue` is categorical. """, sizes=""" sizes : list, dict, or tuple An object that determines how sizes are chosen when `size` is used. List or dict arguments should provide a size for each unique data value, which forces a categorical interpretation. The argument may also be a min, max tuple. """, size_order=""" size_order : list Specified order for appearance of the `size` variable levels, otherwise they are determined from the data. Not relevant when the `size` variable is numeric. """, size_norm=""" size_norm : tuple or Normalize object Normalization in data units for scaling plot objects when the `size` variable is numeric. """, dashes=""" dashes : boolean, list, or dictionary Object determining how to draw the lines for different levels of the `style` variable. Setting to `True` will use default dash codes, or you can pass a list of dash codes or a dictionary mapping levels of the `style` variable to dash codes. Setting to `False` will use solid lines for all subsets. Dashes are specified as in matplotlib: a tuple of `(segment, gap)` lengths, or an empty string to draw a solid line. """, markers=""" markers : boolean, list, or dictionary Object determining how to draw the markers for different levels of the `style` variable. Setting to `True` will use default markers, or you can pass a list of markers or a dictionary mapping levels of the `style` variable to markers. Setting to `False` will draw marker-less lines. Markers are specified as in matplotlib. """, style_order=""" style_order : list Specified order for appearance of the `style` variable levels otherwise they are determined from the data. Not relevant when the `style` variable is numeric. """, units=""" units : vector or key in `data` Grouping variable identifying sampling units. When used, a separate line will be drawn for each unit with appropriate semantics, but no legend entry will be added. Useful for showing distribution of experimental replicates when exact identities are not needed. """, estimator=""" estimator : name of pandas method or callable or None Method for aggregating across multiple observations of the `y` variable at the same `x` level. If `None`, all observations will be drawn. """, ci=""" ci : int or "sd" or None Size of the confidence interval to draw when aggregating. .. deprecated:: 0.12.0 Use the new `errorbar` parameter for more flexibility. """, n_boot=""" n_boot : int Number of bootstraps to use for computing the confidence interval. """, seed=""" seed : int, numpy.random.Generator, or numpy.random.RandomState Seed or random number generator for reproducible bootstrapping. """, legend=""" legend : "auto", "brief", "full", or False How to draw the legend. If "brief", numeric `hue` and `size` variables will be represented with a sample of evenly spaced values. If "full", every group will get an entry in the legend. If "auto", choose between brief or full representation based on number of levels. If `False`, no legend data is added and no legend is drawn. """, ax_in=""" ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses the current Axes. """, ax_out=""" ax : matplotlib Axes Returns the Axes object with the plot drawn onto it. """, ) _param_docs = DocstringComponents.from_nested_components( core=_core_docs["params"], facets=DocstringComponents(_facet_docs), rel=DocstringComponents(_relational_docs), stat=DocstringComponents.from_function_params(EstimateAggregator.__init__), ) class _RelationalPlotter(VectorPlotter): wide_structure = { "x": "@index", "y": "@values", "hue": "@columns", "style": "@columns", } # TODO where best to define default parameters? sort = True class _LinePlotter(_RelationalPlotter): _legend_attributes = ["color", "linewidth", "marker", "dashes"] def __init__( self, *, data=None, variables={}, estimator=None, n_boot=None, seed=None, errorbar=None, sort=True, orient="x", err_style=None, err_kws=None, legend=None ): # TODO this is messy, we want the mapping to be agnostic about # the kind of plot to draw, but for the time being we need to set # this information so the SizeMapping can use it self._default_size_range = ( np.r_[.5, 2] * mpl.rcParams["lines.linewidth"] ) super().__init__(data=data, variables=variables) self.estimator = estimator self.errorbar = errorbar self.n_boot = n_boot self.seed = seed self.sort = sort self.orient = orient self.err_style = err_style self.err_kws = {} if err_kws is None else err_kws self.legend = legend def plot(self, ax, kws): """Draw the plot onto an axes, passing matplotlib kwargs.""" # Draw a test plot, using the passed in kwargs. The goal here is to # honor both (a) the current state of the plot cycler and (b) the # specified kwargs on all the lines we will draw, overriding when # relevant with the data semantics. Note that we won't cycle # internally; in other words, if `hue` is not used, all elements will # have the same color, but they will have the color that you would have # gotten from the corresponding matplotlib function, and calling the # function will advance the axes property cycle. kws = normalize_kwargs(kws, mpl.lines.Line2D) kws.setdefault("markeredgewidth", 0.75) kws.setdefault("markeredgecolor", "w") # Set default error kwargs err_kws = self.err_kws.copy() if self.err_style == "band": err_kws.setdefault("alpha", .2) elif self.err_style == "bars": pass elif self.err_style is not None: err = "`err_style` must be 'band' or 'bars', not {}" raise ValueError(err.format(self.err_style)) # Initialize the aggregation object weighted = "weight" in self.plot_data agg = (WeightedAggregator if weighted else EstimateAggregator)( self.estimator, self.errorbar, n_boot=self.n_boot, seed=self.seed, ) # TODO abstract variable to aggregate over here-ish. Better name? orient = self.orient if orient not in {"x", "y"}: err = f"`orient` must be either 'x' or 'y', not {orient!r}." raise ValueError(err) other = {"x": "y", "y": "x"}[orient] # TODO How to handle NA? We don't want NA to propagate through to the # estimate/CI when some values are present, but we would also like # matplotlib to show "gaps" in the line when all values are missing. # This is straightforward absent aggregation, but complicated with it. # If we want to use nas, we need to conditionalize dropna in iter_data. # Loop over the semantic subsets and add to the plot grouping_vars = "hue", "size", "style" for sub_vars, sub_data in self.iter_data(grouping_vars, from_comp_data=True): if self.sort: sort_vars = ["units", orient, other] sort_cols = [var for var in sort_vars if var in self.variables] sub_data = sub_data.sort_values(sort_cols) if ( self.estimator is not None and sub_data[orient].value_counts().max() > 1 ): if "units" in self.variables: # TODO eventually relax this constraint err = "estimator must be None when specifying units" raise ValueError(err) grouped = sub_data.groupby(orient, sort=self.sort) # Could pass as_index=False instead of reset_index, # but that fails on a corner case with older pandas. sub_data = ( grouped .apply(agg, other, **groupby_apply_include_groups(False)) .reset_index() ) else: sub_data[f"{other}min"] = np.nan sub_data[f"{other}max"] = np.nan # Apply inverse axis scaling for var in "xy": _, inv = _get_transform_functions(ax, var) for col in sub_data.filter(regex=f"^{var}"): sub_data[col] = inv(sub_data[col]) # --- Draw the main line(s) if "units" in self.variables: # XXX why not add to grouping variables? lines = [] for _, unit_data in sub_data.groupby("units"): lines.extend(ax.plot(unit_data["x"], unit_data["y"], **kws)) else: lines = ax.plot(sub_data["x"], sub_data["y"], **kws) for line in lines: if "hue" in sub_vars: line.set_color(self._hue_map(sub_vars["hue"])) if "size" in sub_vars: line.set_linewidth(self._size_map(sub_vars["size"])) if "style" in sub_vars: attributes = self._style_map(sub_vars["style"]) if "dashes" in attributes: line.set_dashes(attributes["dashes"]) if "marker" in attributes: line.set_marker(attributes["marker"]) line_color = line.get_color() line_alpha = line.get_alpha() line_capstyle = line.get_solid_capstyle() # --- Draw the confidence intervals if self.estimator is not None and self.errorbar is not None: # TODO handling of orientation will need to happen here if self.err_style == "band": func = {"x": ax.fill_between, "y": ax.fill_betweenx}[orient] func( sub_data[orient], sub_data[f"{other}min"], sub_data[f"{other}max"], color=line_color, **err_kws ) elif self.err_style == "bars": error_param = { f"{other}err": ( sub_data[other] - sub_data[f"{other}min"], sub_data[f"{other}max"] - sub_data[other], ) } ebars = ax.errorbar( sub_data["x"], sub_data["y"], **error_param, linestyle="", color=line_color, alpha=line_alpha, **err_kws ) # Set the capstyle properly on the error bars for obj in ebars.get_children(): if isinstance(obj, mpl.collections.LineCollection): obj.set_capstyle(line_capstyle) # Finalize the axes details self._add_axis_labels(ax) if self.legend: legend_artist = partial(mpl.lines.Line2D, xdata=[], ydata=[]) attrs = {"hue": "color", "size": "linewidth", "style": None} self.add_legend_data(ax, legend_artist, kws, attrs) handles, _ = ax.get_legend_handles_labels() if handles: legend = ax.legend(title=self.legend_title) adjust_legend_subtitles(legend) class _ScatterPlotter(_RelationalPlotter): _legend_attributes = ["color", "s", "marker"] def __init__(self, *, data=None, variables={}, legend=None): # TODO this is messy, we want the mapping to be agnostic about # the kind of plot to draw, but for the time being we need to set # this information so the SizeMapping can use it self._default_size_range = ( np.r_[.5, 2] * np.square(mpl.rcParams["lines.markersize"]) ) super().__init__(data=data, variables=variables) self.legend = legend def plot(self, ax, kws): # --- Determine the visual attributes of the plot data = self.comp_data.dropna() if data.empty: return kws = normalize_kwargs(kws, mpl.collections.PathCollection) # Define the vectors of x and y positions empty = np.full(len(data), np.nan) x = data.get("x", empty) y = data.get("y", empty) # Apply inverse scaling to the coordinate variables _, inv_x = _get_transform_functions(ax, "x") _, inv_y = _get_transform_functions(ax, "y") x, y = inv_x(x), inv_y(y) if "style" in self.variables: # Use a representative marker so scatter sets the edgecolor # properly for line art markers. We currently enforce either # all or none line art so this works. example_level = self._style_map.levels[0] example_marker = self._style_map(example_level, "marker") kws.setdefault("marker", example_marker) # Conditionally set the marker edgecolor based on whether the marker is "filled" # See https://github.com/matplotlib/matplotlib/issues/17849 for context m = kws.get("marker", mpl.rcParams.get("marker", "o")) if not isinstance(m, mpl.markers.MarkerStyle): # TODO in more recent matplotlib (which?) can pass a MarkerStyle here m = mpl.markers.MarkerStyle(m) if m.is_filled(): kws.setdefault("edgecolor", "w") # Draw the scatter plot points = ax.scatter(x=x, y=y, **kws) # Apply the mapping from semantic variables to artist attributes if "hue" in self.variables: points.set_facecolors(self._hue_map(data["hue"])) if "size" in self.variables: points.set_sizes(self._size_map(data["size"])) if "style" in self.variables: p = [self._style_map(val, "path") for val in data["style"]] points.set_paths(p) # Apply dependent default attributes if "linewidth" not in kws: sizes = points.get_sizes() linewidth = .08 * np.sqrt(np.percentile(sizes, 10)) points.set_linewidths(linewidth) kws["linewidth"] = linewidth # Finalize the axes details self._add_axis_labels(ax) if self.legend: attrs = {"hue": "color", "size": "s", "style": None} self.add_legend_data(ax, _scatter_legend_artist, kws, attrs) handles, _ = ax.get_legend_handles_labels() if handles: legend = ax.legend(title=self.legend_title) adjust_legend_subtitles(legend) def lineplot( data=None, *, x=None, y=None, hue=None, size=None, style=None, units=None, weights=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, estimator="mean", errorbar=("ci", 95), n_boot=1000, seed=None, orient="x", sort=True, err_style="band", err_kws=None, legend="auto", ci="deprecated", ax=None, **kwargs ): # Handle deprecation of ci parameter errorbar = _deprecate_ci(errorbar, ci) p = _LinePlotter( data=data, variables=dict( x=x, y=y, hue=hue, size=size, style=style, units=units, weight=weights ), estimator=estimator, n_boot=n_boot, seed=seed, errorbar=errorbar, sort=sort, orient=orient, err_style=err_style, err_kws=err_kws, legend=legend, ) p.map_hue(palette=palette, order=hue_order, norm=hue_norm) p.map_size(sizes=sizes, order=size_order, norm=size_norm) p.map_style(markers=markers, dashes=dashes, order=style_order) if ax is None: ax = plt.gca() if "style" not in p.variables and not {"ls", "linestyle"} & set(kwargs): # XXX kwargs["dashes"] = "" if dashes is None or isinstance(dashes, bool) else dashes if not p.has_xy_data: return ax p._attach(ax) # Other functions have color as an explicit param, # and we should probably do that here too color = kwargs.pop("color", kwargs.pop("c", None)) kwargs["color"] = _default_color(ax.plot, hue, color, kwargs) p.plot(ax, kwargs) return ax lineplot.__doc__ = """\ Draw a line plot with possibility of several semantic groupings. {narrative.main_api} {narrative.relational_semantic} By default, the plot aggregates over multiple `y` values at each value of `x` and shows an estimate of the central tendency and a confidence interval for that estimate. Parameters ---------- {params.core.data} {params.core.xy} hue : vector or key in `data` Grouping variable that will produce lines with different colors. Can be either categorical or numeric, although color mapping will behave differently in latter case. size : vector or key in `data` Grouping variable that will produce lines with different widths. Can be either categorical or numeric, although size mapping will behave differently in latter case. style : vector or key in `data` Grouping variable that will produce lines with different dashes and/or markers. Can have a numeric dtype but will always be treated as categorical. {params.rel.units} weights : vector or key in `data` Data values or column used to compute weighted estimation. Note that use of weights currently limits the choice of statistics to a 'mean' estimator and 'ci' errorbar. {params.core.palette} {params.core.hue_order} {params.core.hue_norm} {params.rel.sizes} {params.rel.size_order} {params.rel.size_norm} {params.rel.dashes} {params.rel.markers} {params.rel.style_order} {params.rel.estimator} {params.stat.errorbar} {params.rel.n_boot} {params.rel.seed} orient : "x" or "y" Dimension along which the data are sorted / aggregated. Equivalently, the "independent variable" of the resulting function. sort : boolean If True, the data will be sorted by the x and y variables, otherwise lines will connect points in the order they appear in the dataset. err_style : "band" or "bars" Whether to draw the confidence intervals with translucent error bands or discrete error bars. err_kws : dict of keyword arguments Additional parameters to control the aesthetics of the error bars. The kwargs are passed either to :meth:`matplotlib.axes.Axes.fill_between` or :meth:`matplotlib.axes.Axes.errorbar`, depending on `err_style`. {params.rel.legend} {params.rel.ci} {params.core.ax} kwargs : key, value mappings Other keyword arguments are passed down to :meth:`matplotlib.axes.Axes.plot`. Returns ------- {returns.ax} See Also -------- {seealso.scatterplot} {seealso.pointplot} Examples -------- .. include:: ../docstrings/lineplot.rst """.format( narrative=_relational_narrative, params=_param_docs, returns=_core_docs["returns"], seealso=_core_docs["seealso"], ) def scatterplot( data=None, *, x=None, y=None, hue=None, size=None, style=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, legend="auto", ax=None, **kwargs ): p = _ScatterPlotter( data=data, variables=dict(x=x, y=y, hue=hue, size=size, style=style), legend=legend ) p.map_hue(palette=palette, order=hue_order, norm=hue_norm) p.map_size(sizes=sizes, order=size_order, norm=size_norm) p.map_style(markers=markers, order=style_order) if ax is None: ax = plt.gca() if not p.has_xy_data: return ax p._attach(ax) color = kwargs.pop("color", None) kwargs["color"] = _default_color(ax.scatter, hue, color, kwargs) p.plot(ax, kwargs) return ax scatterplot.__doc__ = """\ Draw a scatter plot with possibility of several semantic groupings. {narrative.main_api} {narrative.relational_semantic} Parameters ---------- {params.core.data} {params.core.xy} hue : vector or key in `data` Grouping variable that will produce points with different colors. Can be either categorical or numeric, although color mapping will behave differently in latter case. size : vector or key in `data` Grouping variable that will produce points with different sizes. Can be either categorical or numeric, although size mapping will behave differently in latter case. style : vector or key in `data` Grouping variable that will produce points with different markers. Can have a numeric dtype but will always be treated as categorical. {params.core.palette} {params.core.hue_order} {params.core.hue_norm} {params.rel.sizes} {params.rel.size_order} {params.rel.size_norm} {params.rel.markers} {params.rel.style_order} {params.rel.legend} {params.core.ax} kwargs : key, value mappings Other keyword arguments are passed down to :meth:`matplotlib.axes.Axes.scatter`. Returns ------- {returns.ax} See Also -------- {seealso.lineplot} {seealso.stripplot} {seealso.swarmplot} Examples -------- .. include:: ../docstrings/scatterplot.rst """.format( narrative=_relational_narrative, params=_param_docs, returns=_core_docs["returns"], seealso=_core_docs["seealso"], ) def relplot( data=None, *, x=None, y=None, hue=None, size=None, style=None, units=None, weights=None, row=None, col=None, col_wrap=None, row_order=None, col_order=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=None, dashes=None, style_order=None, legend="auto", kind="scatter", height=5, aspect=1, facet_kws=None, **kwargs ): if kind == "scatter": Plotter = _ScatterPlotter func = scatterplot markers = True if markers is None else markers elif kind == "line": Plotter = _LinePlotter func = lineplot dashes = True if dashes is None else dashes else: err = f"Plot kind {kind} not recognized" raise ValueError(err) # Check for attempt to plot onto specific axes and warn if "ax" in kwargs: msg = ( "relplot is a figure-level function and does not accept " "the `ax` parameter. You may wish to try {}".format(kind + "plot") ) warnings.warn(msg, UserWarning) kwargs.pop("ax") # Use the full dataset to map the semantics variables = dict(x=x, y=y, hue=hue, size=size, style=style) if kind == "line": variables["units"] = units variables["weight"] = weights else: if units is not None: msg = "The `units` parameter has no effect with kind='scatter'." warnings.warn(msg, stacklevel=2) if weights is not None: msg = "The `weights` parameter has no effect with kind='scatter'." warnings.warn(msg, stacklevel=2) p = Plotter( data=data, variables=variables, legend=legend, ) p.map_hue(palette=palette, order=hue_order, norm=hue_norm) p.map_size(sizes=sizes, order=size_order, norm=size_norm) p.map_style(markers=markers, dashes=dashes, order=style_order) # Extract the semantic mappings if "hue" in p.variables: palette = p._hue_map.lookup_table hue_order = p._hue_map.levels hue_norm = p._hue_map.norm else: palette = hue_order = hue_norm = None if "size" in p.variables: sizes = p._size_map.lookup_table size_order = p._size_map.levels size_norm = p._size_map.norm if "style" in p.variables: style_order = p._style_map.levels if markers: markers = {k: p._style_map(k, "marker") for k in style_order} else: markers = None if dashes: dashes = {k: p._style_map(k, "dashes") for k in style_order} else: dashes = None else: markers = dashes = style_order = None # Now extract the data that would be used to draw a single plot variables = p.variables plot_data = p.plot_data # Define the common plotting parameters plot_kws = dict( palette=palette, hue_order=hue_order, hue_norm=hue_norm, sizes=sizes, size_order=size_order, size_norm=size_norm, markers=markers, dashes=dashes, style_order=style_order, legend=False, ) plot_kws.update(kwargs) if kind == "scatter": plot_kws.pop("dashes") # Add the grid semantics onto the plotter grid_variables = dict( x=x, y=y, row=row, col=col, hue=hue, size=size, style=style, ) if kind == "line": grid_variables.update(units=units, weights=weights) p.assign_variables(data, grid_variables) # Define the named variables for plotting on each facet # Rename the variables with a leading underscore to avoid # collisions with faceting variable names plot_variables = {v: f"_{v}" for v in variables} if "weight" in plot_variables: plot_variables["weights"] = plot_variables.pop("weight") plot_kws.update(plot_variables) # Pass the row/col variables to FacetGrid with their original # names so that the axes titles render correctly for var in ["row", "col"]: # Handle faceting variables that lack name information if var in p.variables and p.variables[var] is None: p.variables[var] = f"_{var}_" grid_kws = {v: p.variables.get(v) for v in ["row", "col"]} # Rename the columns of the plot_data structure appropriately new_cols = plot_variables.copy() new_cols.update(grid_kws) full_data = p.plot_data.rename(columns=new_cols) # Set up the FacetGrid object facet_kws = {} if facet_kws is None else facet_kws.copy() g = FacetGrid( data=full_data.dropna(axis=1, how="all"), **grid_kws, col_wrap=col_wrap, row_order=row_order, col_order=col_order, height=height, aspect=aspect, dropna=False, **facet_kws ) # Draw the plot g.map_dataframe(func, **plot_kws) # Label the axes, using the original variables # Pass "" when the variable name is None to overwrite internal variables g.set_axis_labels(variables.get("x") or "", variables.get("y") or "") if legend: # Replace the original plot data so the legend uses numeric data with # the correct type, since we force a categorical mapping above. p.plot_data = plot_data # Handle the additional non-semantic keyword arguments out here. # We're selective because some kwargs may be seaborn function specific # and not relevant to the matplotlib artists going into the legend. # Ideally, we will have a better solution where we don't need to re-make # the legend out here and will have parity with the axes-level functions. keys = ["c", "color", "alpha", "m", "marker"] if kind == "scatter": legend_artist = _scatter_legend_artist keys += ["s", "facecolor", "fc", "edgecolor", "ec", "linewidth", "lw"] else: legend_artist = partial(mpl.lines.Line2D, xdata=[], ydata=[]) keys += [ "markersize", "ms", "markeredgewidth", "mew", "markeredgecolor", "mec", "linestyle", "ls", "linewidth", "lw", ] common_kws = {k: v for k, v in kwargs.items() if k in keys} attrs = {"hue": "color", "style": None} if kind == "scatter": attrs["size"] = "s" elif kind == "line": attrs["size"] = "linewidth" p.add_legend_data(g.axes.flat[0], legend_artist, common_kws, attrs) if p.legend_data: g.add_legend(legend_data=p.legend_data, label_order=p.legend_order, title=p.legend_title, adjust_subtitles=True) # Rename the columns of the FacetGrid's `data` attribute # to match the original column names orig_cols = { f"_{k}": f"_{k}_" if v is None else v for k, v in variables.items() } grid_data = g.data.rename(columns=orig_cols) if data is not None and (x is not None or y is not None): if not isinstance(data, pd.DataFrame): data = pd.DataFrame(data) g.data = pd.merge( data, grid_data[grid_data.columns.difference(data.columns)], left_index=True, right_index=True, ) else: g.data = grid_data return g relplot.__doc__ = """\ Figure-level interface for drawing relational plots onto a FacetGrid. This function provides access to several different axes-level functions that show the relationship between two variables with semantic mappings of subsets. The `kind` parameter selects the underlying axes-level function to use: - :func:`scatterplot` (with `kind="scatter"`; the default) - :func:`lineplot` (with `kind="line"`) Extra keyword arguments are passed to the underlying function, so you should refer to the documentation for each to see kind-specific options. {narrative.main_api} {narrative.relational_semantic} After plotting, the :class:`FacetGrid` with the plot is returned and can be used directly to tweak supporting plot details or add other layers. Parameters ---------- {params.core.data} {params.core.xy} hue : vector or key in `data` Grouping variable that will produce elements with different colors. Can be either categorical or numeric, although color mapping will behave differently in latter case. size : vector or key in `data` Grouping variable that will produce elements with different sizes. Can be either categorical or numeric, although size mapping will behave differently in latter case. style : vector or key in `data` Grouping variable that will produce elements with different styles. Can have a numeric dtype but will always be treated as categorical. {params.rel.units} weights : vector or key in `data` Data values or column used to compute weighted estimation. Note that use of weights currently limits the choice of statistics to a 'mean' estimator and 'ci' errorbar. {params.facets.rowcol} {params.facets.col_wrap} row_order, col_order : lists of strings Order to organize the rows and/or columns of the grid in, otherwise the orders are inferred from the data objects. {params.core.palette} {params.core.hue_order} {params.core.hue_norm} {params.rel.sizes} {params.rel.size_order} {params.rel.size_norm} {params.rel.style_order} {params.rel.dashes} {params.rel.markers} {params.rel.legend} kind : string Kind of plot to draw, corresponding to a seaborn relational plot. Options are `"scatter"` or `"line"`. {params.facets.height} {params.facets.aspect} facet_kws : dict Dictionary of other keyword arguments to pass to :class:`FacetGrid`. kwargs : key, value pairings Other keyword arguments are passed through to the underlying plotting function. Returns ------- {returns.facetgrid} Examples -------- .. include:: ../docstrings/relplot.rst """.format( narrative=_relational_narrative, params=_param_docs, returns=_core_docs["returns"], )