"""Functions to extract parts of sparse matrices """ __docformat__ = "restructuredtext en" __all__ = ['find', 'tril', 'triu'] from ._coo import coo_matrix, coo_array from ._base import sparray def find(A): """Return the indices and values of the nonzero elements of a matrix Parameters ---------- A : dense or sparse array or matrix Matrix whose nonzero elements are desired. Returns ------- (I,J,V) : tuple of arrays I,J, and V contain the row indices, column indices, and values of the nonzero entries. Examples -------- >>> from scipy.sparse import csr_array, find >>> A = csr_array([[7.0, 8.0, 0],[0, 0, 9.0]]) >>> find(A) (array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7., 8., 9.])) """ A = coo_array(A, copy=True) A.sum_duplicates() # remove explicit zeros nz_mask = A.data != 0 return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask] def tril(A, k=0, format=None): """Return the lower triangular portion of a sparse array or matrix Returns the elements on or below the k-th diagonal of A. - k = 0 corresponds to the main diagonal - k > 0 is above the main diagonal - k < 0 is below the main diagonal Parameters ---------- A : dense or sparse array or matrix Matrix whose lower trianglar portion is desired. k : integer : optional The top-most diagonal of the lower triangle. format : string Sparse format of the result, e.g. format="csr", etc. Returns ------- L : sparse matrix Lower triangular portion of A in sparse format. See Also -------- triu : upper triangle in sparse format Examples -------- >>> from scipy.sparse import csr_array, tril >>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]], ... dtype='int32') >>> A.toarray() array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]]) >>> tril(A).toarray() array([[1, 0, 0, 0, 0], [4, 5, 0, 0, 0], [0, 0, 8, 0, 0]]) >>> tril(A).nnz 4 >>> tril(A, k=1).toarray() array([[1, 2, 0, 0, 0], [4, 5, 0, 0, 0], [0, 0, 8, 9, 0]]) >>> tril(A, k=-1).toarray() array([[0, 0, 0, 0, 0], [4, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) >>> tril(A, format='csc') """ coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix # convert to COOrdinate format where things are easy A = coo_sparse(A, copy=False) mask = A.row + k >= A.col row = A.row[mask] col = A.col[mask] data = A.data[mask] new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype) return new_coo.asformat(format) def triu(A, k=0, format=None): """Return the upper triangular portion of a sparse array or matrix Returns the elements on or above the k-th diagonal of A. - k = 0 corresponds to the main diagonal - k > 0 is above the main diagonal - k < 0 is below the main diagonal Parameters ---------- A : dense or sparse array or matrix Matrix whose upper trianglar portion is desired. k : integer : optional The bottom-most diagonal of the upper triangle. format : string Sparse format of the result, e.g. format="csr", etc. Returns ------- L : sparse array or matrix Upper triangular portion of A in sparse format. Sparse array if A is a sparse array, otherwise matrix. See Also -------- tril : lower triangle in sparse format Examples -------- >>> from scipy.sparse import csr_array, triu >>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]], ... dtype='int32') >>> A.toarray() array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]]) >>> triu(A).toarray() array([[1, 2, 0, 0, 3], [0, 5, 0, 6, 7], [0, 0, 8, 9, 0]]) >>> triu(A).nnz 8 >>> triu(A, k=1).toarray() array([[0, 2, 0, 0, 3], [0, 0, 0, 6, 7], [0, 0, 0, 9, 0]]) >>> triu(A, k=-1).toarray() array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]]) >>> triu(A, format='csc') """ coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix # convert to COOrdinate format where things are easy A = coo_sparse(A, copy=False) mask = A.row + k <= A.col row = A.row[mask] col = A.col[mask] data = A.data[mask] new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype) return new_coo.asformat(format)