"""Compressed Sparse Row matrix format""" __docformat__ = "restructuredtext en" __all__ = ['csr_array', 'csr_matrix', 'isspmatrix_csr'] import numpy as np from ._matrix import spmatrix from ._base import _spbase, sparray from ._sparsetools import (csr_tocsc, csr_tobsr, csr_count_blocks, get_csr_submatrix) from ._sputils import upcast from ._compressed import _cs_matrix class _csr_base(_cs_matrix): _format = 'csr' # override IndexMixin.__getitem__ for 1d case until fully implemented def __getitem__(self, key): if self.ndim == 2: return super().__getitem__(key) if isinstance(key, tuple) and len(key) == 1: key = key[0] INT_TYPES = (int, np.integer) if isinstance(key, INT_TYPES): if key < 0: key += self.shape[-1] if key < 0 or key >= self.shape[-1]: raise IndexError('index value out of bounds') return self._get_int(key) else: raise IndexError('array/slice index for 1d csr_array not yet supported') # override IndexMixin.__setitem__ for 1d case until fully implemented def __setitem__(self, key, value): if self.ndim == 2: return super().__setitem__(key, value) if isinstance(key, tuple) and len(key) == 1: key = key[0] INT_TYPES = (int, np.integer) if isinstance(key, INT_TYPES): if key < 0: key += self.shape[-1] if key < 0 or key >= self.shape[-1]: raise IndexError('index value out of bounds') return self._set_int(key, value) else: raise IndexError('array index for 1d csr_array not yet provided') def transpose(self, axes=None, copy=False): if axes is not None and axes != (1, 0): raise ValueError("Sparse arrays/matrices do not support " "an 'axes' parameter because swapping " "dimensions is the only logical permutation.") if self.ndim == 1: return self.copy() if copy else self M, N = self.shape return self._csc_container((self.data, self.indices, self.indptr), shape=(N, M), copy=copy) transpose.__doc__ = _spbase.transpose.__doc__ def tolil(self, copy=False): if self.ndim != 2: raise ValueError("Cannot convert a 1d sparse array to lil format") lil = self._lil_container(self.shape, dtype=self.dtype) self.sum_duplicates() ptr,ind,dat = self.indptr,self.indices,self.data rows, data = lil.rows, lil.data for n in range(self.shape[0]): start = ptr[n] end = ptr[n+1] rows[n] = ind[start:end].tolist() data[n] = dat[start:end].tolist() return lil tolil.__doc__ = _spbase.tolil.__doc__ def tocsr(self, copy=False): if copy: return self.copy() else: return self tocsr.__doc__ = _spbase.tocsr.__doc__ def tocsc(self, copy=False): if self.ndim != 2: raise ValueError("Cannot convert a 1d sparse array to csc format") M, N = self.shape idx_dtype = self._get_index_dtype((self.indptr, self.indices), maxval=max(self.nnz, M)) indptr = np.empty(N + 1, dtype=idx_dtype) indices = np.empty(self.nnz, dtype=idx_dtype) data = np.empty(self.nnz, dtype=upcast(self.dtype)) csr_tocsc(M, N, self.indptr.astype(idx_dtype), self.indices.astype(idx_dtype), self.data, indptr, indices, data) A = self._csc_container((data, indices, indptr), shape=self.shape) A.has_sorted_indices = True return A tocsc.__doc__ = _spbase.tocsc.__doc__ def tobsr(self, blocksize=None, copy=True): if self.ndim != 2: raise ValueError("Cannot convert a 1d sparse array to bsr format") if blocksize is None: from ._spfuncs import estimate_blocksize return self.tobsr(blocksize=estimate_blocksize(self)) elif blocksize == (1,1): arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr) return self._bsr_container(arg1, shape=self.shape, copy=copy) else: R,C = blocksize M,N = self.shape if R < 1 or C < 1 or M % R != 0 or N % C != 0: raise ValueError('invalid blocksize %s' % blocksize) blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices) idx_dtype = self._get_index_dtype((self.indptr, self.indices), maxval=max(N//C, blks)) indptr = np.empty(M//R+1, dtype=idx_dtype) indices = np.empty(blks, dtype=idx_dtype) data = np.zeros((blks,R,C), dtype=self.dtype) csr_tobsr(M, N, R, C, self.indptr.astype(idx_dtype), self.indices.astype(idx_dtype), self.data, indptr, indices, data.ravel()) return self._bsr_container( (data, indices, indptr), shape=self.shape ) tobsr.__doc__ = _spbase.tobsr.__doc__ # these functions are used by the parent class (_cs_matrix) # to remove redundancy between csc_matrix and csr_array @staticmethod def _swap(x): """swap the members of x if this is a column-oriented matrix """ return x def __iter__(self): if self.ndim == 1: zero = self.dtype.type(0) u = 0 for v, d in zip(self.indices, self.data): for _ in range(v - u): yield zero yield d u = v + 1 for _ in range(self.shape[0] - u): yield zero return indptr = np.zeros(2, dtype=self.indptr.dtype) # return 1d (sparray) or 2drow (spmatrix) shape = self.shape[1:] if isinstance(self, sparray) else (1, self.shape[1]) i0 = 0 for i1 in self.indptr[1:]: indptr[1] = i1 - i0 indices = self.indices[i0:i1] data = self.data[i0:i1] yield self.__class__((data, indices, indptr), shape=shape, copy=True) i0 = i1 def _getrow(self, i): """Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector). """ if self.ndim == 1: if i not in (0, -1): raise IndexError(f'index ({i}) out of range') return self.reshape((1, self.shape[0]), copy=True) M, N = self.shape i = int(i) if i < 0: i += M if i < 0 or i >= M: raise IndexError('index (%d) out of range' % i) indptr, indices, data = get_csr_submatrix( M, N, self.indptr, self.indices, self.data, i, i + 1, 0, N) return self.__class__((data, indices, indptr), shape=(1, N), dtype=self.dtype, copy=False) def _getcol(self, i): """Returns a copy of column i. A (m x 1) sparse array (column vector). """ if self.ndim == 1: raise ValueError("getcol not provided for 1d arrays. Use indexing A[j]") M, N = self.shape i = int(i) if i < 0: i += N if i < 0 or i >= N: raise IndexError('index (%d) out of range' % i) indptr, indices, data = get_csr_submatrix( M, N, self.indptr, self.indices, self.data, 0, M, i, i + 1) return self.__class__((data, indices, indptr), shape=(M, 1), dtype=self.dtype, copy=False) def _get_intXarray(self, row, col): return self._getrow(row)._minor_index_fancy(col) def _get_intXslice(self, row, col): if col.step in (1, None): return self._get_submatrix(row, col, copy=True) # TODO: uncomment this once it's faster: # return self._getrow(row)._minor_slice(col) M, N = self.shape start, stop, stride = col.indices(N) ii, jj = self.indptr[row:row+2] row_indices = self.indices[ii:jj] row_data = self.data[ii:jj] if stride > 0: ind = (row_indices >= start) & (row_indices < stop) else: ind = (row_indices <= start) & (row_indices > stop) if abs(stride) > 1: ind &= (row_indices - start) % stride == 0 row_indices = (row_indices[ind] - start) // stride row_data = row_data[ind] row_indptr = np.array([0, len(row_indices)]) if stride < 0: row_data = row_data[::-1] row_indices = abs(row_indices[::-1]) shape = (1, max(0, int(np.ceil(float(stop - start) / stride)))) return self.__class__((row_data, row_indices, row_indptr), shape=shape, dtype=self.dtype, copy=False) def _get_sliceXint(self, row, col): if row.step in (1, None): return self._get_submatrix(row, col, copy=True) return self._major_slice(row)._get_submatrix(minor=col) def _get_sliceXarray(self, row, col): return self._major_slice(row)._minor_index_fancy(col) def _get_arrayXint(self, row, col): return self._major_index_fancy(row)._get_submatrix(minor=col) def _get_arrayXslice(self, row, col): if col.step not in (1, None): col = np.arange(*col.indices(self.shape[1])) return self._get_arrayXarray(row, col) return self._major_index_fancy(row)._get_submatrix(minor=col) def isspmatrix_csr(x): """Is `x` of csr_matrix type? Parameters ---------- x object to check for being a csr matrix Returns ------- bool True if `x` is a csr matrix, False otherwise Examples -------- >>> from scipy.sparse import csr_array, csr_matrix, coo_matrix, isspmatrix_csr >>> isspmatrix_csr(csr_matrix([[5]])) True >>> isspmatrix_csr(csr_array([[5]])) False >>> isspmatrix_csr(coo_matrix([[5]])) False """ return isinstance(x, csr_matrix) # This namespace class separates array from matrix with isinstance class csr_array(_csr_base, sparray): """ Compressed Sparse Row array. This can be instantiated in several ways: csr_array(D) where D is a 2-D ndarray csr_array(S) with another sparse array or matrix S (equivalent to S.tocsr()) csr_array((M, N), [dtype]) to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'. csr_array((data, (row_ind, col_ind)), [shape=(M, N)]) where ``data``, ``row_ind`` and ``col_ind`` satisfy the relationship ``a[row_ind[k], col_ind[k]] = data[k]``. csr_array((data, indices, indptr), [shape=(M, N)]) is the standard CSR representation where the column indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``. If the shape parameter is not supplied, the array dimensions are inferred from the index arrays. Attributes ---------- dtype : dtype Data type of the array shape : 2-tuple Shape of the array ndim : int Number of dimensions (this is always 2) nnz size data CSR format data array of the array indices CSR format index array of the array indptr CSR format index pointer array of the array has_sorted_indices has_canonical_format T Notes ----- Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the CSR format - efficient arithmetic operations CSR + CSR, CSR * CSR, etc. - efficient row slicing - fast matrix vector products Disadvantages of the CSR format - slow column slicing operations (consider CSC) - changes to the sparsity structure are expensive (consider LIL or DOK) Canonical Format - Within each row, indices are sorted by column. - There are no duplicate entries. Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_array >>> csr_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8) >>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]]) >>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_array((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]]) Duplicate entries are summed together: >>> row = np.array([0, 1, 2, 0]) >>> col = np.array([0, 1, 1, 0]) >>> data = np.array([1, 2, 4, 8]) >>> csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]]) As an example of how to construct a CSR array incrementally, the following snippet builds a term-document array from texts: >>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] >>> indptr = [0] >>> indices = [] >>> data = [] >>> vocabulary = {} >>> for d in docs: ... for term in d: ... index = vocabulary.setdefault(term, len(vocabulary)) ... indices.append(index) ... data.append(1) ... indptr.append(len(indices)) ... >>> csr_array((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]]) """ class csr_matrix(spmatrix, _csr_base): """ Compressed Sparse Row matrix. This can be instantiated in several ways: csr_matrix(D) where D is a 2-D ndarray csr_matrix(S) with another sparse array or matrix S (equivalent to S.tocsr()) csr_matrix((M, N), [dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'. csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) where ``data``, ``row_ind`` and ``col_ind`` satisfy the relationship ``a[row_ind[k], col_ind[k]] = data[k]``. csr_matrix((data, indices, indptr), [shape=(M, N)]) is the standard CSR representation where the column indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays. Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz size data CSR format data array of the matrix indices CSR format index array of the matrix indptr CSR format index pointer array of the matrix has_sorted_indices has_canonical_format T Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the CSR format - efficient arithmetic operations CSR + CSR, CSR * CSR, etc. - efficient row slicing - fast matrix vector products Disadvantages of the CSR format - slow column slicing operations (consider CSC) - changes to the sparsity structure are expensive (consider LIL or DOK) Canonical Format - Within each row, indices are sorted by column. - There are no duplicate entries. Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_matrix >>> csr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8) >>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]]) >>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]]) Duplicate entries are summed together: >>> row = np.array([0, 1, 2, 0]) >>> col = np.array([0, 1, 1, 0]) >>> data = np.array([1, 2, 4, 8]) >>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]]) As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts: >>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] >>> indptr = [0] >>> indices = [] >>> data = [] >>> vocabulary = {} >>> for d in docs: ... for term in d: ... index = vocabulary.setdefault(term, len(vocabulary)) ... indices.append(index) ... data.append(1) ... indptr.append(len(indices)) ... >>> csr_matrix((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]]) """