r""" Parameters used in test and benchmark methods. Collections of test cases suitable for testing 1-D root-finders 'original': The original benchmarking functions. Real-valued functions of real-valued inputs on an interval with a zero. f1, .., f3 are continuous and infinitely differentiable f4 has a left- and right- discontinuity at the root f5 has a root at 1 replacing a 1st order pole f6 is randomly positive on one side of the root, randomly negative on the other. f4 - f6 are not continuous at the root. 'aps': The test problems in the 1995 paper TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions" by Alefeld, Potra and Shi. Real-valued functions of real-valued inputs on an interval with a zero. Suitable for methods which start with an enclosing interval, and derivatives up to 2nd order. 'complex': Some complex-valued functions of complex-valued inputs. No enclosing bracket is provided. Suitable for methods which use one or more starting values, and derivatives up to 2nd order. The test cases are provided as a list of dictionaries. The dictionary keys will be a subset of: ["f", "fprime", "fprime2", "args", "bracket", "smoothness", "a", "b", "x0", "x1", "root", "ID"] """ # Sources: # [1] Alefeld, G. E. and Potra, F. A. and Shi, Yixun, # "Algorithm 748: Enclosing Zeros of Continuous Functions", # ACM Trans. Math. Softw. Volume 221(1995) # doi = {10.1145/210089.210111}, # [2] Chandrupatla, Tirupathi R. "A new hybrid quadratic/bisection algorithm # for finding the zero of a nonlinear function without using derivatives." # Advances in Engineering Software 28.3 (1997): 145-149. from random import random import numpy as np from scipy.optimize import _zeros_py as cc from scipy._lib._array_api import array_namespace # "description" refers to the original functions description = """ f2 is a symmetric parabola, x**2 - 1 f3 is a quartic polynomial with large hump in interval f4 is step function with a discontinuity at 1 f5 is a hyperbola with vertical asymptote at 1 f6 has random values positive to left of 1, negative to right Of course, these are not real problems. They just test how the 'good' solvers behave in bad circumstances where bisection is really the best. A good solver should not be much worse than bisection in such circumstance, while being faster for smooth monotone sorts of functions. """ def f1(x): r"""f1 is a quadratic with roots at 0 and 1""" return x * (x - 1.) def f1_fp(x): return 2 * x - 1 def f1_fpp(x): return 2 def f2(x): r"""f2 is a symmetric parabola, x**2 - 1""" return x**2 - 1 def f2_fp(x): return 2 * x def f2_fpp(x): return 2 def f3(x): r"""A quartic with roots at 0, 1, 2 and 3""" return x * (x - 1.) * (x - 2.) * (x - 3.) # x**4 - 6x**3 + 11x**2 - 6x def f3_fp(x): return 4 * x**3 - 18 * x**2 + 22 * x - 6 def f3_fpp(x): return 12 * x**2 - 36 * x + 22 def f4(x): r"""Piecewise linear, left- and right- discontinuous at x=1, the root.""" if x > 1: return 1.0 + .1 * x if x < 1: return -1.0 + .1 * x return 0 def f5(x): r""" Hyperbola with a pole at x=1, but pole replaced with 0. Not continuous at root. """ if x != 1: return 1.0 / (1. - x) return 0 # f6(x) returns random value. Without memoization, calling twice with the # same x returns different values, hence a "random value", not a # "function with random values" _f6_cache = {} def f6(x): v = _f6_cache.get(x, None) if v is None: if x > 1: v = random() elif x < 1: v = -random() else: v = 0 _f6_cache[x] = v return v # Each Original test case has # - a function and its two derivatives, # - additional arguments, # - a bracket enclosing a root, # - the order of differentiability (smoothness) on this interval # - a starting value for methods which don't require a bracket # - the root (inside the bracket) # - an Identifier of the test case _ORIGINAL_TESTS_KEYS = [ "f", "fprime", "fprime2", "args", "bracket", "smoothness", "x0", "root", "ID" ] _ORIGINAL_TESTS = [ [f1, f1_fp, f1_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.01.00"], [f2, f2_fp, f2_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.02.00"], [f3, f3_fp, f3_fpp, (), [0.5, np.sqrt(3)], np.inf, 0.6, 1.0, "original.03.00"], [f4, None, None, (), [0.5, np.sqrt(3)], -1, 0.6, 1.0, "original.04.00"], [f5, None, None, (), [0.5, np.sqrt(3)], -1, 0.6, 1.0, "original.05.00"], [f6, None, None, (), [0.5, np.sqrt(3)], -np.inf, 0.6, 1.0, "original.05.00"] ] _ORIGINAL_TESTS_DICTS = [ dict(zip(_ORIGINAL_TESTS_KEYS, testcase)) for testcase in _ORIGINAL_TESTS ] # ################## # "APS" test cases # Functions and test cases that appear in [1] def aps01_f(x): r"""Straightforward sum of trigonometric function and polynomial""" return np.sin(x) - x / 2 def aps01_fp(x): return np.cos(x) - 1.0 / 2 def aps01_fpp(x): return -np.sin(x) def aps02_f(x): r"""poles at x=n**2, 1st and 2nd derivatives at root are also close to 0""" ii = np.arange(1, 21) return -2 * np.sum((2 * ii - 5)**2 / (x - ii**2)**3) def aps02_fp(x): ii = np.arange(1, 21) return 6 * np.sum((2 * ii - 5)**2 / (x - ii**2)**4) def aps02_fpp(x): ii = np.arange(1, 21) return 24 * np.sum((2 * ii - 5)**2 / (x - ii**2)**5) def aps03_f(x, a, b): r"""Rapidly changing at the root""" return a * x * np.exp(b * x) def aps03_fp(x, a, b): return a * (b * x + 1) * np.exp(b * x) def aps03_fpp(x, a, b): return a * (b * (b * x + 1) + b) * np.exp(b * x) def aps04_f(x, n, a): r"""Medium-degree polynomial""" return x**n - a def aps04_fp(x, n, a): return n * x**(n - 1) def aps04_fpp(x, n, a): return n * (n - 1) * x**(n - 2) def aps05_f(x): r"""Simple Trigonometric function""" return np.sin(x) - 1.0 / 2 def aps05_fp(x): return np.cos(x) def aps05_fpp(x): return -np.sin(x) def aps06_f(x, n): r"""Exponential rapidly changing from -1 to 1 at x=0""" return 2 * x * np.exp(-n) - 2 * np.exp(-n * x) + 1 def aps06_fp(x, n): return 2 * np.exp(-n) + 2 * n * np.exp(-n * x) def aps06_fpp(x, n): return -2 * n * n * np.exp(-n * x) def aps07_f(x, n): r"""Upside down parabola with parametrizable height""" return (1 + (1 - n)**2) * x - (1 - n * x)**2 def aps07_fp(x, n): return (1 + (1 - n)**2) + 2 * n * (1 - n * x) def aps07_fpp(x, n): return -2 * n * n def aps08_f(x, n): r"""Degree n polynomial""" return x * x - (1 - x)**n def aps08_fp(x, n): return 2 * x + n * (1 - x)**(n - 1) def aps08_fpp(x, n): return 2 - n * (n - 1) * (1 - x)**(n - 2) def aps09_f(x, n): r"""Upside down quartic with parametrizable height""" return (1 + (1 - n)**4) * x - (1 - n * x)**4 def aps09_fp(x, n): return (1 + (1 - n)**4) + 4 * n * (1 - n * x)**3 def aps09_fpp(x, n): return -12 * n * (1 - n * x)**2 def aps10_f(x, n): r"""Exponential plus a polynomial""" return np.exp(-n * x) * (x - 1) + x**n def aps10_fp(x, n): return np.exp(-n * x) * (-n * (x - 1) + 1) + n * x**(n - 1) def aps10_fpp(x, n): return (np.exp(-n * x) * (-n * (-n * (x - 1) + 1) + -n * x) + n * (n - 1) * x**(n - 2)) def aps11_f(x, n): r"""Rational function with a zero at x=1/n and a pole at x=0""" return (n * x - 1) / ((n - 1) * x) def aps11_fp(x, n): return 1 / (n - 1) / x**2 def aps11_fpp(x, n): return -2 / (n - 1) / x**3 def aps12_f(x, n): r"""nth root of x, with a zero at x=n""" return np.power(x, 1.0 / n) - np.power(n, 1.0 / n) def aps12_fp(x, n): return np.power(x, (1.0 - n) / n) / n def aps12_fpp(x, n): return np.power(x, (1.0 - 2 * n) / n) * (1.0 / n) * (1.0 - n) / n _MAX_EXPABLE = np.log(np.finfo(float).max) def aps13_f(x): r"""Function with *all* derivatives 0 at the root""" if x == 0: return 0 # x2 = 1.0/x**2 # if x2 > 708: # return 0 y = 1 / x**2 if y > _MAX_EXPABLE: return 0 return x / np.exp(y) def aps13_fp(x): if x == 0: return 0 y = 1 / x**2 if y > _MAX_EXPABLE: return 0 return (1 + 2 / x**2) / np.exp(y) def aps13_fpp(x): if x == 0: return 0 y = 1 / x**2 if y > _MAX_EXPABLE: return 0 return 2 * (2 - x**2) / x**5 / np.exp(y) def aps14_f(x, n): r"""0 for negative x-values, trigonometric+linear for x positive""" if x <= 0: return -n / 20.0 return n / 20.0 * (x / 1.5 + np.sin(x) - 1) def aps14_fp(x, n): if x <= 0: return 0 return n / 20.0 * (1.0 / 1.5 + np.cos(x)) def aps14_fpp(x, n): if x <= 0: return 0 return -n / 20.0 * (np.sin(x)) def aps15_f(x, n): r"""piecewise linear, constant outside of [0, 0.002/(1+n)]""" if x < 0: return -0.859 if x > 2 * 1e-3 / (1 + n): return np.e - 1.859 return np.exp((n + 1) * x / 2 * 1000) - 1.859 def aps15_fp(x, n): if not 0 <= x <= 2 * 1e-3 / (1 + n): return np.e - 1.859 return np.exp((n + 1) * x / 2 * 1000) * (n + 1) / 2 * 1000 def aps15_fpp(x, n): if not 0 <= x <= 2 * 1e-3 / (1 + n): return np.e - 1.859 return np.exp((n + 1) * x / 2 * 1000) * (n + 1) / 2 * 1000 * (n + 1) / 2 * 1000 # Each APS test case has # - a function and its two derivatives, # - additional arguments, # - a bracket enclosing a root, # - the order of differentiability of the function on this interval # - a starting value for methods which don't require a bracket # - the root (inside the bracket) # - an Identifier of the test case # # Algorithm 748 is a bracketing algorithm so a bracketing interval was provided # in [1] for each test case. Newton and Halley methods need a single # starting point x0, which was chosen to be near the middle of the interval, # unless that would have made the problem too easy. _APS_TESTS_KEYS = [ "f", "fprime", "fprime2", "args", "bracket", "smoothness", "x0", "root", "ID" ] _APS_TESTS = [ [aps01_f, aps01_fp, aps01_fpp, (), [np.pi / 2, np.pi], np.inf, 3, 1.89549426703398094e+00, "aps.01.00"], [aps02_f, aps02_fp, aps02_fpp, (), [1 + 1e-9, 4 - 1e-9], np.inf, 2, 3.02291534727305677e+00, "aps.02.00"], [aps02_f, aps02_fp, aps02_fpp, (), [4 + 1e-9, 9 - 1e-9], np.inf, 5, 6.68375356080807848e+00, "aps.02.01"], [aps02_f, aps02_fp, aps02_fpp, (), [9 + 1e-9, 16 - 1e-9], np.inf, 10, 1.12387016550022114e+01, "aps.02.02"], [aps02_f, aps02_fp, aps02_fpp, (), [16 + 1e-9, 25 - 1e-9], np.inf, 17, 1.96760000806234103e+01, "aps.02.03"], [aps02_f, aps02_fp, aps02_fpp, (), [25 + 1e-9, 36 - 1e-9], np.inf, 26, 2.98282273265047557e+01, "aps.02.04"], [aps02_f, aps02_fp, aps02_fpp, (), [36 + 1e-9, 49 - 1e-9], np.inf, 37, 4.19061161952894139e+01, "aps.02.05"], [aps02_f, aps02_fp, aps02_fpp, (), [49 + 1e-9, 64 - 1e-9], np.inf, 50, 5.59535958001430913e+01, "aps.02.06"], [aps02_f, aps02_fp, aps02_fpp, (), [64 + 1e-9, 81 - 1e-9], np.inf, 65, 7.19856655865877997e+01, "aps.02.07"], [aps02_f, aps02_fp, aps02_fpp, (), [81 + 1e-9, 100 - 1e-9], np.inf, 82, 9.00088685391666701e+01, "aps.02.08"], [aps02_f, aps02_fp, aps02_fpp, (), [100 + 1e-9, 121 - 1e-9], np.inf, 101, 1.10026532748330197e+02, "aps.02.09"], [aps03_f, aps03_fp, aps03_fpp, (-40, -1), [-9, 31], np.inf, -2, 0, "aps.03.00"], [aps03_f, aps03_fp, aps03_fpp, (-100, -2), [-9, 31], np.inf, -2, 0, "aps.03.01"], [aps03_f, aps03_fp, aps03_fpp, (-200, -3), [-9, 31], np.inf, -2, 0, "aps.03.02"], [aps04_f, aps04_fp, aps04_fpp, (4, 0.2), [0, 5], np.inf, 2.5, 6.68740304976422006e-01, "aps.04.00"], [aps04_f, aps04_fp, aps04_fpp, (6, 0.2), [0, 5], np.inf, 2.5, 7.64724491331730039e-01, "aps.04.01"], [aps04_f, aps04_fp, aps04_fpp, (8, 0.2), [0, 5], np.inf, 2.5, 8.17765433957942545e-01, "aps.04.02"], [aps04_f, aps04_fp, aps04_fpp, (10, 0.2), [0, 5], np.inf, 2.5, 8.51339922520784609e-01, "aps.04.03"], [aps04_f, aps04_fp, aps04_fpp, (12, 0.2), [0, 5], np.inf, 2.5, 8.74485272221167897e-01, "aps.04.04"], [aps04_f, aps04_fp, aps04_fpp, (4, 1), [0, 5], np.inf, 2.5, 1, "aps.04.05"], [aps04_f, aps04_fp, aps04_fpp, (6, 1), [0, 5], np.inf, 2.5, 1, "aps.04.06"], [aps04_f, aps04_fp, aps04_fpp, (8, 1), [0, 5], np.inf, 2.5, 1, "aps.04.07"], [aps04_f, aps04_fp, aps04_fpp, (10, 1), [0, 5], np.inf, 2.5, 1, "aps.04.08"], [aps04_f, aps04_fp, aps04_fpp, (12, 1), [0, 5], np.inf, 2.5, 1, "aps.04.09"], [aps04_f, aps04_fp, aps04_fpp, (8, 1), [-0.95, 4.05], np.inf, 1.5, 1, "aps.04.10"], [aps04_f, aps04_fp, aps04_fpp, (10, 1), [-0.95, 4.05], np.inf, 1.5, 1, "aps.04.11"], [aps04_f, aps04_fp, aps04_fpp, (12, 1), [-0.95, 4.05], np.inf, 1.5, 1, "aps.04.12"], [aps04_f, aps04_fp, aps04_fpp, (14, 1), [-0.95, 4.05], np.inf, 1.5, 1, "aps.04.13"], [aps05_f, aps05_fp, aps05_fpp, (), [0, 1.5], np.inf, 1.3, np.pi / 6, "aps.05.00"], [aps06_f, aps06_fp, aps06_fpp, (1,), [0, 1], np.inf, 0.5, 4.22477709641236709e-01, "aps.06.00"], [aps06_f, aps06_fp, aps06_fpp, (2,), [0, 1], np.inf, 0.5, 3.06699410483203705e-01, "aps.06.01"], [aps06_f, aps06_fp, aps06_fpp, (3,), [0, 1], np.inf, 0.5, 2.23705457654662959e-01, "aps.06.02"], [aps06_f, aps06_fp, aps06_fpp, (4,), [0, 1], np.inf, 0.5, 1.71719147519508369e-01, "aps.06.03"], [aps06_f, aps06_fp, aps06_fpp, (5,), [0, 1], np.inf, 0.4, 1.38257155056824066e-01, "aps.06.04"], [aps06_f, aps06_fp, aps06_fpp, (20,), [0, 1], np.inf, 0.1, 3.46573590208538521e-02, "aps.06.05"], [aps06_f, aps06_fp, aps06_fpp, (40,), [0, 1], np.inf, 5e-02, 1.73286795139986315e-02, "aps.06.06"], [aps06_f, aps06_fp, aps06_fpp, (60,), [0, 1], np.inf, 1.0 / 30, 1.15524530093324210e-02, "aps.06.07"], [aps06_f, aps06_fp, aps06_fpp, (80,), [0, 1], np.inf, 2.5e-02, 8.66433975699931573e-03, "aps.06.08"], [aps06_f, aps06_fp, aps06_fpp, (100,), [0, 1], np.inf, 2e-02, 6.93147180559945415e-03, "aps.06.09"], [aps07_f, aps07_fp, aps07_fpp, (5,), [0, 1], np.inf, 0.4, 3.84025518406218985e-02, "aps.07.00"], [aps07_f, aps07_fp, aps07_fpp, (10,), [0, 1], np.inf, 0.4, 9.90000999800049949e-03, "aps.07.01"], [aps07_f, aps07_fp, aps07_fpp, (20,), [0, 1], np.inf, 0.4, 2.49375003906201174e-03, "aps.07.02"], [aps08_f, aps08_fp, aps08_fpp, (2,), [0, 1], np.inf, 0.9, 0.5, "aps.08.00"], [aps08_f, aps08_fp, aps08_fpp, (5,), [0, 1], np.inf, 0.9, 3.45954815848242059e-01, "aps.08.01"], [aps08_f, aps08_fp, aps08_fpp, (10,), [0, 1], np.inf, 0.9, 2.45122333753307220e-01, "aps.08.02"], [aps08_f, aps08_fp, aps08_fpp, (15,), [0, 1], np.inf, 0.9, 1.95547623536565629e-01, "aps.08.03"], [aps08_f, aps08_fp, aps08_fpp, (20,), [0, 1], np.inf, 0.9, 1.64920957276440960e-01, "aps.08.04"], [aps09_f, aps09_fp, aps09_fpp, (1,), [0, 1], np.inf, 0.5, 2.75508040999484394e-01, "aps.09.00"], [aps09_f, aps09_fp, aps09_fpp, (2,), [0, 1], np.inf, 0.5, 1.37754020499742197e-01, "aps.09.01"], [aps09_f, aps09_fp, aps09_fpp, (4,), [0, 1], np.inf, 0.5, 1.03052837781564422e-02, "aps.09.02"], [aps09_f, aps09_fp, aps09_fpp, (5,), [0, 1], np.inf, 0.5, 3.61710817890406339e-03, "aps.09.03"], [aps09_f, aps09_fp, aps09_fpp, (8,), [0, 1], np.inf, 0.5, 4.10872918496395375e-04, "aps.09.04"], [aps09_f, aps09_fp, aps09_fpp, (15,), [0, 1], np.inf, 0.5, 2.59895758929076292e-05, "aps.09.05"], [aps09_f, aps09_fp, aps09_fpp, (20,), [0, 1], np.inf, 0.5, 7.66859512218533719e-06, "aps.09.06"], [aps10_f, aps10_fp, aps10_fpp, (1,), [0, 1], np.inf, 0.9, 4.01058137541547011e-01, "aps.10.00"], [aps10_f, aps10_fp, aps10_fpp, (5,), [0, 1], np.inf, 0.9, 5.16153518757933583e-01, "aps.10.01"], [aps10_f, aps10_fp, aps10_fpp, (10,), [0, 1], np.inf, 0.9, 5.39522226908415781e-01, "aps.10.02"], [aps10_f, aps10_fp, aps10_fpp, (15,), [0, 1], np.inf, 0.9, 5.48182294340655241e-01, "aps.10.03"], [aps10_f, aps10_fp, aps10_fpp, (20,), [0, 1], np.inf, 0.9, 5.52704666678487833e-01, "aps.10.04"], [aps11_f, aps11_fp, aps11_fpp, (2,), [0.01, 1], np.inf, 1e-02, 1.0 / 2, "aps.11.00"], [aps11_f, aps11_fp, aps11_fpp, (5,), [0.01, 1], np.inf, 1e-02, 1.0 / 5, "aps.11.01"], [aps11_f, aps11_fp, aps11_fpp, (15,), [0.01, 1], np.inf, 1e-02, 1.0 / 15, "aps.11.02"], [aps11_f, aps11_fp, aps11_fpp, (20,), [0.01, 1], np.inf, 1e-02, 1.0 / 20, "aps.11.03"], [aps12_f, aps12_fp, aps12_fpp, (2,), [1, 100], np.inf, 1.1, 2, "aps.12.00"], [aps12_f, aps12_fp, aps12_fpp, (3,), [1, 100], np.inf, 1.1, 3, "aps.12.01"], [aps12_f, aps12_fp, aps12_fpp, (4,), [1, 100], np.inf, 1.1, 4, "aps.12.02"], [aps12_f, aps12_fp, aps12_fpp, (5,), [1, 100], np.inf, 1.1, 5, "aps.12.03"], [aps12_f, aps12_fp, aps12_fpp, (6,), [1, 100], np.inf, 1.1, 6, "aps.12.04"], [aps12_f, aps12_fp, aps12_fpp, (7,), [1, 100], np.inf, 1.1, 7, "aps.12.05"], [aps12_f, aps12_fp, aps12_fpp, (9,), [1, 100], np.inf, 1.1, 9, "aps.12.06"], [aps12_f, aps12_fp, aps12_fpp, (11,), [1, 100], np.inf, 1.1, 11, "aps.12.07"], [aps12_f, aps12_fp, aps12_fpp, (13,), [1, 100], np.inf, 1.1, 13, "aps.12.08"], [aps12_f, aps12_fp, aps12_fpp, (15,), [1, 100], np.inf, 1.1, 15, "aps.12.09"], [aps12_f, aps12_fp, aps12_fpp, (17,), [1, 100], np.inf, 1.1, 17, "aps.12.10"], [aps12_f, aps12_fp, aps12_fpp, (19,), [1, 100], np.inf, 1.1, 19, "aps.12.11"], [aps12_f, aps12_fp, aps12_fpp, (21,), [1, 100], np.inf, 1.1, 21, "aps.12.12"], [aps12_f, aps12_fp, aps12_fpp, (23,), [1, 100], np.inf, 1.1, 23, "aps.12.13"], [aps12_f, aps12_fp, aps12_fpp, (25,), [1, 100], np.inf, 1.1, 25, "aps.12.14"], [aps12_f, aps12_fp, aps12_fpp, (27,), [1, 100], np.inf, 1.1, 27, "aps.12.15"], [aps12_f, aps12_fp, aps12_fpp, (29,), [1, 100], np.inf, 1.1, 29, "aps.12.16"], [aps12_f, aps12_fp, aps12_fpp, (31,), [1, 100], np.inf, 1.1, 31, "aps.12.17"], [aps12_f, aps12_fp, aps12_fpp, (33,), [1, 100], np.inf, 1.1, 33, "aps.12.18"], [aps13_f, aps13_fp, aps13_fpp, (), [-1, 4], np.inf, 1.5, 0, "aps.13.00"], [aps14_f, aps14_fp, aps14_fpp, (1,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.00"], [aps14_f, aps14_fp, aps14_fpp, (2,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.01"], [aps14_f, aps14_fp, aps14_fpp, (3,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.02"], [aps14_f, aps14_fp, aps14_fpp, (4,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.03"], [aps14_f, aps14_fp, aps14_fpp, (5,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.04"], [aps14_f, aps14_fp, aps14_fpp, (6,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.05"], [aps14_f, aps14_fp, aps14_fpp, (7,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.06"], [aps14_f, aps14_fp, aps14_fpp, (8,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.07"], [aps14_f, aps14_fp, aps14_fpp, (9,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.08"], [aps14_f, aps14_fp, aps14_fpp, (10,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.09"], [aps14_f, aps14_fp, aps14_fpp, (11,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.10"], [aps14_f, aps14_fp, aps14_fpp, (12,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.11"], [aps14_f, aps14_fp, aps14_fpp, (13,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.12"], [aps14_f, aps14_fp, aps14_fpp, (14,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.13"], [aps14_f, aps14_fp, aps14_fpp, (15,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.14"], [aps14_f, aps14_fp, aps14_fpp, (16,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.15"], [aps14_f, aps14_fp, aps14_fpp, (17,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.16"], [aps14_f, aps14_fp, aps14_fpp, (18,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.17"], [aps14_f, aps14_fp, aps14_fpp, (19,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.18"], [aps14_f, aps14_fp, aps14_fpp, (20,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.19"], [aps14_f, aps14_fp, aps14_fpp, (21,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.20"], [aps14_f, aps14_fp, aps14_fpp, (22,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.21"], [aps14_f, aps14_fp, aps14_fpp, (23,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.22"], [aps14_f, aps14_fp, aps14_fpp, (24,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.23"], [aps14_f, aps14_fp, aps14_fpp, (25,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.24"], [aps14_f, aps14_fp, aps14_fpp, (26,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.25"], [aps14_f, aps14_fp, aps14_fpp, (27,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.26"], [aps14_f, aps14_fp, aps14_fpp, (28,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.27"], [aps14_f, aps14_fp, aps14_fpp, (29,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.28"], [aps14_f, aps14_fp, aps14_fpp, (30,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.29"], [aps14_f, aps14_fp, aps14_fpp, (31,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.30"], [aps14_f, aps14_fp, aps14_fpp, (32,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.31"], [aps14_f, aps14_fp, aps14_fpp, (33,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.32"], [aps14_f, aps14_fp, aps14_fpp, (34,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.33"], [aps14_f, aps14_fp, aps14_fpp, (35,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.34"], [aps14_f, aps14_fp, aps14_fpp, (36,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.35"], [aps14_f, aps14_fp, aps14_fpp, (37,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.36"], [aps14_f, aps14_fp, aps14_fpp, (38,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.37"], [aps14_f, aps14_fp, aps14_fpp, (39,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.38"], [aps14_f, aps14_fp, aps14_fpp, (40,), [-1000, np.pi / 2], 0, 1, 6.23806518961612433e-01, "aps.14.39"], [aps15_f, aps15_fp, aps15_fpp, (20,), [-1000, 1e-4], 0, -2, 5.90513055942197166e-05, "aps.15.00"], [aps15_f, aps15_fp, aps15_fpp, (21,), [-1000, 1e-4], 0, -2, 5.63671553399369967e-05, "aps.15.01"], [aps15_f, aps15_fp, aps15_fpp, (22,), [-1000, 1e-4], 0, -2, 5.39164094555919196e-05, "aps.15.02"], [aps15_f, aps15_fp, aps15_fpp, (23,), [-1000, 1e-4], 0, -2, 5.16698923949422470e-05, "aps.15.03"], [aps15_f, aps15_fp, aps15_fpp, (24,), [-1000, 1e-4], 0, -2, 4.96030966991445609e-05, "aps.15.04"], [aps15_f, aps15_fp, aps15_fpp, (25,), [-1000, 1e-4], 0, -2, 4.76952852876389951e-05, "aps.15.05"], [aps15_f, aps15_fp, aps15_fpp, (26,), [-1000, 1e-4], 0, -2, 4.59287932399486662e-05, "aps.15.06"], [aps15_f, aps15_fp, aps15_fpp, (27,), [-1000, 1e-4], 0, -2, 4.42884791956647841e-05, "aps.15.07"], [aps15_f, aps15_fp, aps15_fpp, (28,), [-1000, 1e-4], 0, -2, 4.27612902578832391e-05, "aps.15.08"], [aps15_f, aps15_fp, aps15_fpp, (29,), [-1000, 1e-4], 0, -2, 4.13359139159538030e-05, "aps.15.09"], [aps15_f, aps15_fp, aps15_fpp, (30,), [-1000, 1e-4], 0, -2, 4.00024973380198076e-05, "aps.15.10"], [aps15_f, aps15_fp, aps15_fpp, (31,), [-1000, 1e-4], 0, -2, 3.87524192962066869e-05, "aps.15.11"], [aps15_f, aps15_fp, aps15_fpp, (32,), [-1000, 1e-4], 0, -2, 3.75781035599579910e-05, "aps.15.12"], [aps15_f, aps15_fp, aps15_fpp, (33,), [-1000, 1e-4], 0, -2, 3.64728652199592355e-05, "aps.15.13"], [aps15_f, aps15_fp, aps15_fpp, (34,), [-1000, 1e-4], 0, -2, 3.54307833565318273e-05, "aps.15.14"], [aps15_f, aps15_fp, aps15_fpp, (35,), [-1000, 1e-4], 0, -2, 3.44465949299614980e-05, "aps.15.15"], [aps15_f, aps15_fp, aps15_fpp, (36,), [-1000, 1e-4], 0, -2, 3.35156058778003705e-05, "aps.15.16"], [aps15_f, aps15_fp, aps15_fpp, (37,), [-1000, 1e-4], 0, -2, 3.26336162494372125e-05, "aps.15.17"], [aps15_f, aps15_fp, aps15_fpp, (38,), [-1000, 1e-4], 0, -2, 3.17968568584260013e-05, "aps.15.18"], [aps15_f, aps15_fp, aps15_fpp, (39,), [-1000, 1e-4], 0, -2, 3.10019354369653455e-05, "aps.15.19"], [aps15_f, aps15_fp, aps15_fpp, (40,), [-1000, 1e-4], 0, -2, 3.02457906702100968e-05, "aps.15.20"], [aps15_f, aps15_fp, aps15_fpp, (100,), [-1000, 1e-4], 0, -2, 1.22779942324615231e-05, "aps.15.21"], [aps15_f, aps15_fp, aps15_fpp, (200,), [-1000, 1e-4], 0, -2, 6.16953939044086617e-06, "aps.15.22"], [aps15_f, aps15_fp, aps15_fpp, (300,), [-1000, 1e-4], 0, -2, 4.11985852982928163e-06, "aps.15.23"], [aps15_f, aps15_fp, aps15_fpp, (400,), [-1000, 1e-4], 0, -2, 3.09246238772721682e-06, "aps.15.24"], [aps15_f, aps15_fp, aps15_fpp, (500,), [-1000, 1e-4], 0, -2, 2.47520442610501789e-06, "aps.15.25"], [aps15_f, aps15_fp, aps15_fpp, (600,), [-1000, 1e-4], 0, -2, 2.06335676785127107e-06, "aps.15.26"], [aps15_f, aps15_fp, aps15_fpp, (700,), [-1000, 1e-4], 0, -2, 1.76901200781542651e-06, "aps.15.27"], [aps15_f, aps15_fp, aps15_fpp, (800,), [-1000, 1e-4], 0, -2, 1.54816156988591016e-06, "aps.15.28"], [aps15_f, aps15_fp, aps15_fpp, (900,), [-1000, 1e-4], 0, -2, 1.37633453660223511e-06, "aps.15.29"], [aps15_f, aps15_fp, aps15_fpp, (1000,), [-1000, 1e-4], 0, -2, 1.23883857889971403e-06, "aps.15.30"] ] _APS_TESTS_DICTS = [dict(zip(_APS_TESTS_KEYS, testcase)) for testcase in _APS_TESTS] # ################## # "complex" test cases # A few simple, complex-valued, functions, defined on the complex plane. def cplx01_f(z, n, a): r"""z**n-a: Use to find the nth root of a""" return z**n - a def cplx01_fp(z, n, a): return n * z**(n - 1) def cplx01_fpp(z, n, a): return n * (n - 1) * z**(n - 2) def cplx02_f(z, a): r"""e**z - a: Use to find the log of a""" return np.exp(z) - a def cplx02_fp(z, a): return np.exp(z) def cplx02_fpp(z, a): return np.exp(z) # Each "complex" test case has # - a function and its two derivatives, # - additional arguments, # - the order of differentiability of the function on this interval # - two starting values x0 and x1 # - the root # - an Identifier of the test case # # Algorithm 748 is a bracketing algorithm so a bracketing interval was provided # in [1] for each test case. Newton and Halley need a single starting point # x0, which was chosen to be near the middle of the interval, unless that # would make the problem too easy. _COMPLEX_TESTS_KEYS = [ "f", "fprime", "fprime2", "args", "smoothness", "x0", "x1", "root", "ID" ] _COMPLEX_TESTS = [ [cplx01_f, cplx01_fp, cplx01_fpp, (2, -1), np.inf, (1 + 1j), (0.5 + 0.5j), 1j, "complex.01.00"], [cplx01_f, cplx01_fp, cplx01_fpp, (3, 1), np.inf, (-1 + 1j), (-0.5 + 2.0j), (-0.5 + np.sqrt(3) / 2 * 1.0j), "complex.01.01"], [cplx01_f, cplx01_fp, cplx01_fpp, (3, -1), np.inf, 1j, (0.5 + 0.5j), (0.5 + np.sqrt(3) / 2 * 1.0j), "complex.01.02"], [cplx01_f, cplx01_fp, cplx01_fpp, (3, 8), np.inf, 5, 4, 2, "complex.01.03"], [cplx02_f, cplx02_fp, cplx02_fpp, (-1,), np.inf, (1 + 2j), (0.5 + 0.5j), np.pi * 1.0j, "complex.02.00"], [cplx02_f, cplx02_fp, cplx02_fpp, (1j,), np.inf, (1 + 2j), (0.5 + 0.5j), np.pi * 0.5j, "complex.02.01"], ] _COMPLEX_TESTS_DICTS = [ dict(zip(_COMPLEX_TESTS_KEYS, testcase)) for testcase in _COMPLEX_TESTS ] def _add_a_b(tests): r"""Add "a" and "b" keys to each test from the "bracket" value""" for d in tests: for k, v in zip(['a', 'b'], d.get('bracket', [])): d[k] = v _add_a_b(_ORIGINAL_TESTS_DICTS) _add_a_b(_APS_TESTS_DICTS) _add_a_b(_COMPLEX_TESTS_DICTS) def get_tests(collection='original', smoothness=None): r"""Return the requested collection of test cases, as an array of dicts with subset-specific keys Allowed values of collection: 'original': The original benchmarking functions. Real-valued functions of real-valued inputs on an interval with a zero. f1, .., f3 are continuous and infinitely differentiable f4 has a single discontinuity at the root f5 has a root at 1 replacing a 1st order pole f6 is randomly positive on one side of the root, randomly negative on the other 'aps': The test problems in the TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions" paper by Alefeld, Potra and Shi. Real-valued functions of real-valued inputs on an interval with a zero. Suitable for methods which start with an enclosing interval, and derivatives up to 2nd order. 'complex': Some complex-valued functions of complex-valued inputs. No enclosing bracket is provided. Suitable for methods which use one or more starting values, and derivatives up to 2nd order. The dictionary keys will be a subset of ["f", "fprime", "fprime2", "args", "bracket", "a", b", "smoothness", "x0", "x1", "root", "ID"] """ # noqa: E501 collection = collection or "original" subsets = {"aps": _APS_TESTS_DICTS, "complex": _COMPLEX_TESTS_DICTS, "original": _ORIGINAL_TESTS_DICTS, "chandrupatla": _CHANDRUPATLA_TESTS_DICTS} tests = subsets.get(collection, []) if smoothness is not None: tests = [tc for tc in tests if tc['smoothness'] >= smoothness] return tests # Backwards compatibility methods = [cc.bisect, cc.ridder, cc.brenth, cc.brentq] mstrings = ['cc.bisect', 'cc.ridder', 'cc.brenth', 'cc.brentq'] functions = [f2, f3, f4, f5, f6] fstrings = ['f2', 'f3', 'f4', 'f5', 'f6'] # ################## # "Chandrupatla" test cases # Functions and test cases that appear in [2] def fun1(x): return x**3 - 2*x - 5 fun1.root = 2.0945514815423265 # additional precision using mpmath.findroot def fun2(x): return 1 - 1/x**2 fun2.root = 1 def fun3(x): return (x-3)**3 fun3.root = 3 def fun4(x): return 6*(x-2)**5 fun4.root = 2 def fun5(x): return x**9 fun5.root = 0 def fun6(x): return x**19 fun6.root = 0 def fun7(x): xp = array_namespace(x) return 0 if xp.abs(x) < 3.8e-4 else x*xp.exp(-x**(-2)) fun7.root = 0 def fun8(x): xp = array_namespace(x) xi = 0.61489 return -(3062*(1-xi)*xp.exp(-x))/(xi + (1-xi)*xp.exp(-x)) - 1013 + 1628/x fun8.root = 1.0375360332870405 def fun9(x): xp = array_namespace(x) return xp.exp(x) - 2 - 0.01/x**2 + .000002/x**3 fun9.root = 0.7032048403631358 # Each "chandropatla" test case has # - a function, # - two starting values x0 and x1 # - the root # - the number of function evaluations required by Chandrupatla's algorithm # - an Identifier of the test case # # Chandrupatla's is a bracketing algorithm, so a bracketing interval was # provided in [2] for each test case. No special support for testing with # secant/Newton/Halley is provided. _CHANDRUPATLA_TESTS_KEYS = ["f", "bracket", "root", "nfeval", "ID"] _CHANDRUPATLA_TESTS = [ [fun1, [2, 3], fun1.root, 7], [fun1, [1, 10], fun1.root, 11], [fun1, [1, 100], fun1.root, 14], [fun1, [-1e4, 1e4], fun1.root, 23], [fun1, [-1e10, 1e10], fun1.root, 43], [fun2, [0.5, 1.51], fun2.root, 8], [fun2, [1e-4, 1e4], fun2.root, 22], [fun2, [1e-6, 1e6], fun2.root, 28], [fun2, [1e-10, 1e10], fun2.root, 41], [fun2, [1e-12, 1e12], fun2.root, 48], [fun3, [0, 5], fun3.root, 21], [fun3, [-10, 10], fun3.root, 23], [fun3, [-1e4, 1e4], fun3.root, 36], [fun3, [-1e6, 1e6], fun3.root, 45], [fun3, [-1e10, 1e10], fun3.root, 55], [fun4, [0, 5], fun4.root, 21], [fun4, [-10, 10], fun4.root, 23], [fun4, [-1e4, 1e4], fun4.root, 33], [fun4, [-1e6, 1e6], fun4.root, 43], [fun4, [-1e10, 1e10], fun4.root, 54], [fun5, [-1, 4], fun5.root, 21], [fun5, [-2, 5], fun5.root, 22], [fun5, [-1, 10], fun5.root, 23], [fun5, [-5, 50], fun5.root, 25], [fun5, [-10, 100], fun5.root, 26], [fun6, [-1., 4.], fun6.root, 21], [fun6, [-2., 5.], fun6.root, 22], [fun6, [-1., 10.], fun6.root, 23], [fun6, [-5., 50.], fun6.root, 25], [fun6, [-10., 100.], fun6.root, 26], [fun7, [-1, 4], fun7.root, 8], [fun7, [-2, 5], fun7.root, 8], [fun7, [-1, 10], fun7.root, 11], [fun7, [-5, 50], fun7.root, 18], [fun7, [-10, 100], fun7.root, 19], [fun8, [2e-4, 2], fun8.root, 9], [fun8, [2e-4, 3], fun8.root, 10], [fun8, [2e-4, 9], fun8.root, 11], [fun8, [2e-4, 27], fun8.root, 12], [fun8, [2e-4, 81], fun8.root, 14], [fun9, [2e-4, 1], fun9.root, 7], [fun9, [2e-4, 3], fun9.root, 8], [fun9, [2e-4, 9], fun9.root, 10], [fun9, [2e-4, 27], fun9.root, 11], [fun9, [2e-4, 81], fun9.root, 13], ] _CHANDRUPATLA_TESTS = [test + [f'{test[0].__name__}.{i%5+1}'] for i, test in enumerate(_CHANDRUPATLA_TESTS)] _CHANDRUPATLA_TESTS_DICTS = [dict(zip(_CHANDRUPATLA_TESTS_KEYS, testcase)) for testcase in _CHANDRUPATLA_TESTS] _add_a_b(_CHANDRUPATLA_TESTS_DICTS)