# Dual Annealing implementation. # Copyright (c) 2018 Sylvain Gubian , # Yang Xiang # Author: Sylvain Gubian, Yang Xiang, PMP S.A. """ A Dual Annealing global optimization algorithm """ import numpy as np from scipy.optimize import OptimizeResult from scipy.optimize import minimize, Bounds from scipy.special import gammaln from scipy._lib._util import check_random_state from scipy.optimize._constraints import new_bounds_to_old __all__ = ['dual_annealing'] class VisitingDistribution: """ Class used to generate new coordinates based on the distorted Cauchy-Lorentz distribution. Depending on the steps within the strategy chain, the class implements the strategy for generating new location changes. Parameters ---------- lb : array_like A 1-D NumPy ndarray containing lower bounds of the generated components. Neither NaN or inf are allowed. ub : array_like A 1-D NumPy ndarray containing upper bounds for the generated components. Neither NaN or inf are allowed. visiting_param : float Parameter for visiting distribution. Default value is 2.62. Higher values give the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region. The value range is (1, 3]. Its value is fixed for the life of the object. rand_gen : {`~numpy.random.RandomState`, `~numpy.random.Generator`} A `~numpy.random.RandomState`, `~numpy.random.Generator` object for using the current state of the created random generator container. """ TAIL_LIMIT = 1.e8 MIN_VISIT_BOUND = 1.e-10 def __init__(self, lb, ub, visiting_param, rand_gen): # if you wish to make _visiting_param adjustable during the life of # the object then _factor2, _factor3, _factor5, _d1, _factor6 will # have to be dynamically calculated in `visit_fn`. They're factored # out here so they don't need to be recalculated all the time. self._visiting_param = visiting_param self.rand_gen = rand_gen self.lower = lb self.upper = ub self.bound_range = ub - lb # these are invariant numbers unless visiting_param changes self._factor2 = np.exp((4.0 - self._visiting_param) * np.log( self._visiting_param - 1.0)) self._factor3 = np.exp((2.0 - self._visiting_param) * np.log(2.0) / (self._visiting_param - 1.0)) self._factor4_p = np.sqrt(np.pi) * self._factor2 / (self._factor3 * ( 3.0 - self._visiting_param)) self._factor5 = 1.0 / (self._visiting_param - 1.0) - 0.5 self._d1 = 2.0 - self._factor5 self._factor6 = np.pi * (1.0 - self._factor5) / np.sin( np.pi * (1.0 - self._factor5)) / np.exp(gammaln(self._d1)) def visiting(self, x, step, temperature): """ Based on the step in the strategy chain, new coordinates are generated by changing all components is the same time or only one of them, the new values are computed with visit_fn method """ dim = x.size if step < dim: # Changing all coordinates with a new visiting value visits = self.visit_fn(temperature, dim) upper_sample, lower_sample = self.rand_gen.uniform(size=2) visits[visits > self.TAIL_LIMIT] = self.TAIL_LIMIT * upper_sample visits[visits < -self.TAIL_LIMIT] = -self.TAIL_LIMIT * lower_sample x_visit = visits + x a = x_visit - self.lower b = np.fmod(a, self.bound_range) + self.bound_range x_visit = np.fmod(b, self.bound_range) + self.lower x_visit[np.fabs( x_visit - self.lower) < self.MIN_VISIT_BOUND] += 1.e-10 else: # Changing only one coordinate at a time based on strategy # chain step x_visit = np.copy(x) visit = self.visit_fn(temperature, 1)[0] if visit > self.TAIL_LIMIT: visit = self.TAIL_LIMIT * self.rand_gen.uniform() elif visit < -self.TAIL_LIMIT: visit = -self.TAIL_LIMIT * self.rand_gen.uniform() index = step - dim x_visit[index] = visit + x[index] a = x_visit[index] - self.lower[index] b = np.fmod(a, self.bound_range[index]) + self.bound_range[index] x_visit[index] = np.fmod(b, self.bound_range[ index]) + self.lower[index] if np.fabs(x_visit[index] - self.lower[ index]) < self.MIN_VISIT_BOUND: x_visit[index] += self.MIN_VISIT_BOUND return x_visit def visit_fn(self, temperature, dim): """ Formula Visita from p. 405 of reference [2] """ x, y = self.rand_gen.normal(size=(dim, 2)).T factor1 = np.exp(np.log(temperature) / (self._visiting_param - 1.0)) factor4 = self._factor4_p * factor1 # sigmax x *= np.exp(-(self._visiting_param - 1.0) * np.log( self._factor6 / factor4) / (3.0 - self._visiting_param)) den = np.exp((self._visiting_param - 1.0) * np.log(np.fabs(y)) / (3.0 - self._visiting_param)) return x / den class EnergyState: """ Class used to record the energy state. At any time, it knows what is the currently used coordinates and the most recent best location. Parameters ---------- lower : array_like A 1-D NumPy ndarray containing lower bounds for generating an initial random components in the `reset` method. upper : array_like A 1-D NumPy ndarray containing upper bounds for generating an initial random components in the `reset` method components. Neither NaN or inf are allowed. callback : callable, ``callback(x, f, context)``, optional A callback function which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the latest minimum found, and `context` has value in [0, 1, 2] """ # Maximum number of trials for generating a valid starting point MAX_REINIT_COUNT = 1000 def __init__(self, lower, upper, callback=None): self.ebest = None self.current_energy = None self.current_location = None self.xbest = None self.lower = lower self.upper = upper self.callback = callback def reset(self, func_wrapper, rand_gen, x0=None): """ Initialize current location is the search domain. If `x0` is not provided, a random location within the bounds is generated. """ if x0 is None: self.current_location = rand_gen.uniform(self.lower, self.upper, size=len(self.lower)) else: self.current_location = np.copy(x0) init_error = True reinit_counter = 0 while init_error: self.current_energy = func_wrapper.fun(self.current_location) if self.current_energy is None: raise ValueError('Objective function is returning None') if (not np.isfinite(self.current_energy) or np.isnan( self.current_energy)): if reinit_counter >= EnergyState.MAX_REINIT_COUNT: init_error = False message = ( 'Stopping algorithm because function ' 'create NaN or (+/-) infinity values even with ' 'trying new random parameters' ) raise ValueError(message) self.current_location = rand_gen.uniform(self.lower, self.upper, size=self.lower.size) reinit_counter += 1 else: init_error = False # If first time reset, initialize ebest and xbest if self.ebest is None and self.xbest is None: self.ebest = self.current_energy self.xbest = np.copy(self.current_location) # Otherwise, we keep them in case of reannealing reset def update_best(self, e, x, context): self.ebest = e self.xbest = np.copy(x) if self.callback is not None: val = self.callback(x, e, context) if val is not None: if val: return ('Callback function requested to stop early by ' 'returning True') def update_current(self, e, x): self.current_energy = e self.current_location = np.copy(x) class StrategyChain: """ Class that implements within a Markov chain the strategy for location acceptance and local search decision making. Parameters ---------- acceptance_param : float Parameter for acceptance distribution. It is used to control the probability of acceptance. The lower the acceptance parameter, the smaller the probability of acceptance. Default value is -5.0 with a range (-1e4, -5]. visit_dist : VisitingDistribution Instance of `VisitingDistribution` class. func_wrapper : ObjectiveFunWrapper Instance of `ObjectiveFunWrapper` class. minimizer_wrapper: LocalSearchWrapper Instance of `LocalSearchWrapper` class. rand_gen : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. energy_state: EnergyState Instance of `EnergyState` class. """ def __init__(self, acceptance_param, visit_dist, func_wrapper, minimizer_wrapper, rand_gen, energy_state): # Local strategy chain minimum energy and location self.emin = energy_state.current_energy self.xmin = np.array(energy_state.current_location) # Global optimizer state self.energy_state = energy_state # Acceptance parameter self.acceptance_param = acceptance_param # Visiting distribution instance self.visit_dist = visit_dist # Wrapper to objective function self.func_wrapper = func_wrapper # Wrapper to the local minimizer self.minimizer_wrapper = minimizer_wrapper self.not_improved_idx = 0 self.not_improved_max_idx = 1000 self._rand_gen = rand_gen self.temperature_step = 0 self.K = 100 * len(energy_state.current_location) def accept_reject(self, j, e, x_visit): r = self._rand_gen.uniform() pqv_temp = 1.0 - ((1.0 - self.acceptance_param) * (e - self.energy_state.current_energy) / self.temperature_step) if pqv_temp <= 0.: pqv = 0. else: pqv = np.exp(np.log(pqv_temp) / ( 1. - self.acceptance_param)) if r <= pqv: # We accept the new location and update state self.energy_state.update_current(e, x_visit) self.xmin = np.copy(self.energy_state.current_location) # No improvement for a long time if self.not_improved_idx >= self.not_improved_max_idx: if j == 0 or self.energy_state.current_energy < self.emin: self.emin = self.energy_state.current_energy self.xmin = np.copy(self.energy_state.current_location) def run(self, step, temperature): self.temperature_step = temperature / float(step + 1) self.not_improved_idx += 1 for j in range(self.energy_state.current_location.size * 2): if j == 0: if step == 0: self.energy_state_improved = True else: self.energy_state_improved = False x_visit = self.visit_dist.visiting( self.energy_state.current_location, j, temperature) # Calling the objective function e = self.func_wrapper.fun(x_visit) if e < self.energy_state.current_energy: # We have got a better energy value self.energy_state.update_current(e, x_visit) if e < self.energy_state.ebest: val = self.energy_state.update_best(e, x_visit, 0) if val is not None: if val: return val self.energy_state_improved = True self.not_improved_idx = 0 else: # We have not improved but do we accept the new location? self.accept_reject(j, e, x_visit) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during annealing') # End of StrategyChain loop def local_search(self): # Decision making for performing a local search # based on strategy chain results # If energy has been improved or no improvement since too long, # performing a local search with the best strategy chain location if self.energy_state_improved: # Global energy has improved, let's see if LS improves further e, x = self.minimizer_wrapper.local_search(self.energy_state.xbest, self.energy_state.ebest) if e < self.energy_state.ebest: self.not_improved_idx = 0 val = self.energy_state.update_best(e, x, 1) if val is not None: if val: return val self.energy_state.update_current(e, x) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during local search') # Check probability of a need to perform a LS even if no improvement do_ls = False if self.K < 90 * len(self.energy_state.current_location): pls = np.exp(self.K * ( self.energy_state.ebest - self.energy_state.current_energy) / self.temperature_step) if pls >= self._rand_gen.uniform(): do_ls = True # Global energy not improved, let's see what LS gives # on the best strategy chain location if self.not_improved_idx >= self.not_improved_max_idx: do_ls = True if do_ls: e, x = self.minimizer_wrapper.local_search(self.xmin, self.emin) self.xmin = np.copy(x) self.emin = e self.not_improved_idx = 0 self.not_improved_max_idx = self.energy_state.current_location.size if e < self.energy_state.ebest: val = self.energy_state.update_best( self.emin, self.xmin, 2) if val is not None: if val: return val self.energy_state.update_current(e, x) if self.func_wrapper.nfev >= self.func_wrapper.maxfun: return ('Maximum number of function call reached ' 'during dual annealing') class ObjectiveFunWrapper: def __init__(self, func, maxfun=1e7, *args): self.func = func self.args = args # Number of objective function evaluations self.nfev = 0 # Number of gradient function evaluation if used self.ngev = 0 # Number of hessian of the objective function if used self.nhev = 0 self.maxfun = maxfun def fun(self, x): self.nfev += 1 return self.func(x, *self.args) class LocalSearchWrapper: """ Class used to wrap around the minimizer used for local search Default local minimizer is SciPy minimizer L-BFGS-B """ LS_MAXITER_RATIO = 6 LS_MAXITER_MIN = 100 LS_MAXITER_MAX = 1000 def __init__(self, search_bounds, func_wrapper, *args, **kwargs): self.func_wrapper = func_wrapper self.kwargs = kwargs self.jac = self.kwargs.get('jac', None) self.hess = self.kwargs.get('hess', None) self.hessp = self.kwargs.get('hessp', None) self.kwargs.pop("args", None) self.minimizer = minimize bounds_list = list(zip(*search_bounds)) self.lower = np.array(bounds_list[0]) self.upper = np.array(bounds_list[1]) # If no minimizer specified, use SciPy minimize with 'L-BFGS-B' method if not self.kwargs: n = len(self.lower) ls_max_iter = min(max(n * self.LS_MAXITER_RATIO, self.LS_MAXITER_MIN), self.LS_MAXITER_MAX) self.kwargs['method'] = 'L-BFGS-B' self.kwargs['options'] = { 'maxiter': ls_max_iter, } self.kwargs['bounds'] = list(zip(self.lower, self.upper)) else: if callable(self.jac): def wrapped_jac(x): return self.jac(x, *args) self.kwargs['jac'] = wrapped_jac if callable(self.hess): def wrapped_hess(x): return self.hess(x, *args) self.kwargs['hess'] = wrapped_hess if callable(self.hessp): def wrapped_hessp(x, p): return self.hessp(x, p, *args) self.kwargs['hessp'] = wrapped_hessp def local_search(self, x, e): # Run local search from the given x location where energy value is e x_tmp = np.copy(x) mres = self.minimizer(self.func_wrapper.fun, x, **self.kwargs) if 'njev' in mres: self.func_wrapper.ngev += mres.njev if 'nhev' in mres: self.func_wrapper.nhev += mres.nhev # Check if is valid value is_finite = np.all(np.isfinite(mres.x)) and np.isfinite(mres.fun) in_bounds = np.all(mres.x >= self.lower) and np.all( mres.x <= self.upper) is_valid = is_finite and in_bounds # Use the new point only if it is valid and return a better results if is_valid and mres.fun < e: return mres.fun, mres.x else: return e, x_tmp def dual_annealing(func, bounds, args=(), maxiter=1000, minimizer_kwargs=None, initial_temp=5230., restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0, maxfun=1e7, seed=None, no_local_search=False, callback=None, x0=None): """ Find the global minimum of a function using Dual Annealing. Parameters ---------- func : callable The objective function to be minimized. Must be in the form ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. bounds : sequence or `Bounds` Bounds for variables. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. Sequence of ``(min, max)`` pairs for each element in `x`. args : tuple, optional Any additional fixed parameters needed to completely specify the objective function. maxiter : int, optional The maximum number of global search iterations. Default value is 1000. minimizer_kwargs : dict, optional Keyword arguments to be passed to the local minimizer (`minimize`). An important option could be ``method`` for the minimizer method to use. If no keyword arguments are provided, the local minimizer defaults to 'L-BFGS-B' and uses the already supplied bounds. If `minimizer_kwargs` is specified, then the dict must contain all parameters required to control the local minimization. `args` is ignored in this dict, as it is passed automatically. `bounds` is not automatically passed on to the local minimizer as the method may not support them. initial_temp : float, optional The initial temperature, use higher values to facilitates a wider search of the energy landscape, allowing dual_annealing to escape local minima that it is trapped in. Default value is 5230. Range is (0.01, 5.e4]. restart_temp_ratio : float, optional During the annealing process, temperature is decreasing, when it reaches ``initial_temp * restart_temp_ratio``, the reannealing process is triggered. Default value of the ratio is 2e-5. Range is (0, 1). visit : float, optional Parameter for visiting distribution. Default value is 2.62. Higher values give the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region. The value range is (1, 3]. accept : float, optional Parameter for acceptance distribution. It is used to control the probability of acceptance. The lower the acceptance parameter, the smaller the probability of acceptance. Default value is -5.0 with a range (-1e4, -5]. maxfun : int, optional Soft limit for the number of objective function calls. If the algorithm is in the middle of a local search, this number will be exceeded, the algorithm will stop just after the local search is done. Default value is 1e7. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Specify `seed` for repeatable minimizations. The random numbers generated with this seed only affect the visiting distribution function and new coordinates generation. no_local_search : bool, optional If `no_local_search` is set to True, a traditional Generalized Simulated Annealing will be performed with no local search strategy applied. callback : callable, optional A callback function with signature ``callback(x, f, context)``, which will be called for all minima found. ``x`` and ``f`` are the coordinates and function value of the latest minimum found, and ``context`` has value in [0, 1, 2], with the following meaning: - 0: minimum detected in the annealing process. - 1: detection occurred in the local search process. - 2: detection done in the dual annealing process. If the callback implementation returns True, the algorithm will stop. x0 : ndarray, shape(n,), optional Coordinates of a single N-D starting point. Returns ------- res : OptimizeResult The optimization result represented as a `OptimizeResult` object. Important attributes are: ``x`` the solution array, ``fun`` the value of the function at the solution, and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. Notes ----- This function implements the Dual Annealing optimization. This stochastic approach derived from [3]_ combines the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled to a strategy for applying a local search on accepted locations [4]_. An alternative implementation of this same algorithm is described in [5]_ and benchmarks are presented in [6]_. This approach introduces an advanced method to refine the solution found by the generalized annealing process. This algorithm uses a distorted Cauchy-Lorentz visiting distribution, with its shape controlled by the parameter :math:`q_{v}` .. math:: g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\ \\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\ \\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\ \\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\ \\frac{1}{q_{v}-1}+\\frac{D-1}{2}}} Where :math:`t` is the artificial time. This visiting distribution is used to generate a trial jump distance :math:`\\Delta x(t)` of variable :math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`. From the starting point, after calling the visiting distribution function, the acceptance probability is computed as follows: .. math:: p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\ \\frac{1}{1-q_{a}}}\\}} Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero acceptance probability is assigned to the cases where .. math:: [1-(1-q_{a}) \\beta \\Delta E] < 0 The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to .. math:: T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\ 1 + t\\right)^{q_{v}-1}-1} Where :math:`q_{v}` is the visiting parameter. .. versionadded:: 1.2.0 References ---------- .. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479-487 (1998). .. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing. Physica A, 233, 395-406 (1996). .. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated Annealing Algorithm and Its Application to the Thomson Model. Physics Letters A, 233, 216-220 (1997). .. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated Annealing. Physical Review E, 62, 4473 (2000). .. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized Simulated Annealing for Efficient Global Optimization: the GenSA Package for R. The R Journal, Volume 5/1 (2013). .. [6] Mullen, K. Continuous Global Optimization in R. Journal of Statistical Software, 60(6), 1 - 45, (2014). :doi:`10.18637/jss.v060.i06` Examples -------- The following example is a 10-D problem, with many local minima. The function involved is called Rastrigin (https://en.wikipedia.org/wiki/Rastrigin_function) >>> import numpy as np >>> from scipy.optimize import dual_annealing >>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x) >>> lw = [-5.12] * 10 >>> up = [5.12] * 10 >>> ret = dual_annealing(func, bounds=list(zip(lw, up))) >>> ret.x array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09, -6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09, -6.05775280e-09, -5.00668935e-09]) # random >>> ret.fun 0.000000 """ if isinstance(bounds, Bounds): bounds = new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb)) if x0 is not None and not len(x0) == len(bounds): raise ValueError('Bounds size does not match x0') lu = list(zip(*bounds)) lower = np.array(lu[0]) upper = np.array(lu[1]) # Check that restart temperature ratio is correct if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.: raise ValueError('Restart temperature ratio has to be in range (0, 1)') # Checking bounds are valid if (np.any(np.isinf(lower)) or np.any(np.isinf(upper)) or np.any( np.isnan(lower)) or np.any(np.isnan(upper))): raise ValueError('Some bounds values are inf values or nan values') # Checking that bounds are consistent if not np.all(lower < upper): raise ValueError('Bounds are not consistent min < max') # Checking that bounds are the same length if not len(lower) == len(upper): raise ValueError('Bounds do not have the same dimensions') # Wrapper for the objective function func_wrapper = ObjectiveFunWrapper(func, maxfun, *args) # minimizer_kwargs has to be a dict, not None minimizer_kwargs = minimizer_kwargs or {} minimizer_wrapper = LocalSearchWrapper( bounds, func_wrapper, *args, **minimizer_kwargs) # Initialization of random Generator for reproducible runs if seed provided rand_state = check_random_state(seed) # Initialization of the energy state energy_state = EnergyState(lower, upper, callback) energy_state.reset(func_wrapper, rand_state, x0) # Minimum value of annealing temperature reached to perform # re-annealing temperature_restart = initial_temp * restart_temp_ratio # VisitingDistribution instance visit_dist = VisitingDistribution(lower, upper, visit, rand_state) # Strategy chain instance strategy_chain = StrategyChain(accept, visit_dist, func_wrapper, minimizer_wrapper, rand_state, energy_state) need_to_stop = False iteration = 0 message = [] # OptimizeResult object to be returned optimize_res = OptimizeResult() optimize_res.success = True optimize_res.status = 0 t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0 # Run the search loop while not need_to_stop: for i in range(maxiter): # Compute temperature for this step s = float(i) + 2.0 t2 = np.exp((visit - 1) * np.log(s)) - 1.0 temperature = initial_temp * t1 / t2 if iteration >= maxiter: message.append("Maximum number of iteration reached") need_to_stop = True break # Need a re-annealing process? if temperature < temperature_restart: energy_state.reset(func_wrapper, rand_state) break # starting strategy chain val = strategy_chain.run(i, temperature) if val is not None: message.append(val) need_to_stop = True optimize_res.success = False break # Possible local search at the end of the strategy chain if not no_local_search: val = strategy_chain.local_search() if val is not None: message.append(val) need_to_stop = True optimize_res.success = False break iteration += 1 # Setting the OptimizeResult values optimize_res.x = energy_state.xbest optimize_res.fun = energy_state.ebest optimize_res.nit = iteration optimize_res.nfev = func_wrapper.nfev optimize_res.njev = func_wrapper.ngev optimize_res.nhev = func_wrapper.nhev optimize_res.message = message return optimize_res