""" Module of functions that are like ufuncs in acting on arrays and optionally storing results in an output array. """ __all__ = ['fix', 'isneginf', 'isposinf'] import numpy._core.numeric as nx from numpy._core.overrides import array_function_dispatch import warnings import functools def _dispatcher(x, out=None): return (x, out) @array_function_dispatch(_dispatcher, verify=False, module='numpy') def fix(x, out=None): """ Round to nearest integer towards zero. Round an array of floats element-wise to nearest integer towards zero. The rounded values have the same data-type as the input. Parameters ---------- x : array_like An array to be rounded out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the input broadcasts to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray of floats An array with the same dimensions and data-type as the input. If second argument is not supplied then a new array is returned with the rounded values. If a second argument is supplied the result is stored there. The return value ``out`` is then a reference to that array. See Also -------- rint, trunc, floor, ceil around : Round to given number of decimals Examples -------- >>> import numpy as np >>> np.fix(3.14) 3.0 >>> np.fix(3) 3 >>> np.fix([2.1, 2.9, -2.1, -2.9]) array([ 2., 2., -2., -2.]) """ # promote back to an array if flattened res = nx.asanyarray(nx.ceil(x, out=out)) res = nx.floor(x, out=res, where=nx.greater_equal(x, 0)) # when no out argument is passed and no subclasses are involved, flatten # scalars if out is None and type(res) is nx.ndarray: res = res[()] return res @array_function_dispatch(_dispatcher, verify=False, module='numpy') def isposinf(x, out=None): """ Test element-wise for positive infinity, return result as bool array. Parameters ---------- x : array_like The input array. out : array_like, optional A location into which the result is stored. If provided, it must have a shape that the input broadcasts to. If not provided or None, a freshly-allocated boolean array is returned. Returns ------- out : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a boolean array is returned with values True where the corresponding element of the input is positive infinity and values False where the element of the input is not positive infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value `out` is then a reference to that array. See Also -------- isinf, isneginf, isfinite, isnan Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when x is a scalar input, if first and second arguments have different shapes, or if the first argument has complex values Examples -------- >>> import numpy as np >>> np.isposinf(np.inf) True >>> np.isposinf(-np.inf) False >>> np.isposinf([-np.inf, 0., np.inf]) array([False, False, True]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isposinf(x, y) array([0, 0, 1]) >>> y array([0, 0, 1]) """ is_inf = nx.isinf(x) try: signbit = ~nx.signbit(x) except TypeError as e: dtype = nx.asanyarray(x).dtype raise TypeError(f'This operation is not supported for {dtype} values ' 'because it would be ambiguous.') from e else: return nx.logical_and(is_inf, signbit, out) @array_function_dispatch(_dispatcher, verify=False, module='numpy') def isneginf(x, out=None): """ Test element-wise for negative infinity, return result as bool array. Parameters ---------- x : array_like The input array. out : array_like, optional A location into which the result is stored. If provided, it must have a shape that the input broadcasts to. If not provided or None, a freshly-allocated boolean array is returned. Returns ------- out : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a numpy boolean array is returned with values True where the corresponding element of the input is negative infinity and values False where the element of the input is not negative infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value `out` is then a reference to that array. See Also -------- isinf, isposinf, isnan, isfinite Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when x is a scalar input, if first and second arguments have different shapes, or if the first argument has complex values. Examples -------- >>> import numpy as np >>> np.isneginf(-np.inf) True >>> np.isneginf(np.inf) False >>> np.isneginf([-np.inf, 0., np.inf]) array([ True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isneginf(x, y) array([1, 0, 0]) >>> y array([1, 0, 0]) """ is_inf = nx.isinf(x) try: signbit = nx.signbit(x) except TypeError as e: dtype = nx.asanyarray(x).dtype raise TypeError(f'This operation is not supported for {dtype} values ' 'because it would be ambiguous.') from e else: return nx.logical_and(is_inf, signbit, out)