""" Contains all classes and functions to deal with lists, dicts, generators and iterators in general. """ from jedi.inference import compiled from jedi.inference import analysis from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \ LazyTreeValue from jedi.inference.helpers import get_int_or_none, is_string, \ reraise_getitem_errors, SimpleGetItemNotFound from jedi.inference.utils import safe_property, to_list from jedi.inference.cache import inference_state_method_cache from jedi.inference.filters import LazyAttributeOverwrite, publish_method from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \ ContextualizedNode, iterate_values, sentinel, \ LazyValueWrapper from jedi.parser_utils import get_sync_comp_fors from jedi.inference.context import CompForContext from jedi.inference.value.dynamic_arrays import check_array_additions class IterableMixin: def py__next__(self, contextualized_node=None): return self.py__iter__(contextualized_node) def py__stop_iteration_returns(self): return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')]) # At the moment, safe values are simple values like "foo", 1 and not # lists/dicts. Therefore as a small speed optimization we can just do the # default instead of resolving the lazy wrapped values, that are just # doing this in the end as well. # This mostly speeds up patterns like `sys.version_info >= (3, 0)` in # typeshed. get_safe_value = Value.get_safe_value class GeneratorBase(LazyAttributeOverwrite, IterableMixin): array_type = None def _get_wrapped_value(self): instance, = self._get_cls().execute_annotation() return instance def _get_cls(self): generator, = self.inference_state.typing_module.py__getattribute__('Generator') return generator def py__bool__(self): return True @publish_method('__iter__') def _iter(self, arguments): return ValueSet([self]) @publish_method('send') @publish_method('__next__') def _next(self, arguments): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def py__stop_iteration_returns(self): return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')]) @property def name(self): return compiled.CompiledValueName(self, 'Generator') def get_annotated_class_object(self): from jedi.inference.gradual.generics import TupleGenericManager gen_values = self.merge_types_of_iterate().py__class__() gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES)) return self._get_cls().with_generics(gm) class Generator(GeneratorBase): """Handling of `yield` functions.""" def __init__(self, inference_state, func_execution_context): super().__init__(inference_state) self._func_execution_context = func_execution_context def py__iter__(self, contextualized_node=None): iterators = self._func_execution_context.infer_annotations() if iterators: return iterators.iterate(contextualized_node) return self._func_execution_context.get_yield_lazy_values() def py__stop_iteration_returns(self): return self._func_execution_context.get_return_values() def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._func_execution_context) def comprehension_from_atom(inference_state, value, atom): bracket = atom.children[0] test_list_comp = atom.children[1] if bracket == '{': if atom.children[1].children[1] == ':': sync_comp_for = test_list_comp.children[3] if sync_comp_for.type == 'comp_for': sync_comp_for = sync_comp_for.children[1] return DictComprehension( inference_state, value, sync_comp_for_node=sync_comp_for, key_node=test_list_comp.children[0], value_node=test_list_comp.children[2], ) else: cls = SetComprehension elif bracket == '(': cls = GeneratorComprehension elif bracket == '[': cls = ListComprehension sync_comp_for = test_list_comp.children[1] if sync_comp_for.type == 'comp_for': sync_comp_for = sync_comp_for.children[1] return cls( inference_state, defining_context=value, sync_comp_for_node=sync_comp_for, entry_node=test_list_comp.children[0], ) class ComprehensionMixin: @inference_state_method_cache() def _get_comp_for_context(self, parent_context, comp_for): return CompForContext(parent_context, comp_for) def _nested(self, comp_fors, parent_context=None): comp_for = comp_fors[0] is_async = comp_for.parent.type == 'comp_for' input_node = comp_for.children[3] parent_context = parent_context or self._defining_context input_types = parent_context.infer_node(input_node) cn = ContextualizedNode(parent_context, input_node) iterated = input_types.iterate(cn, is_async=is_async) exprlist = comp_for.children[1] for i, lazy_value in enumerate(iterated): types = lazy_value.infer() dct = unpack_tuple_to_dict(parent_context, types, exprlist) context = self._get_comp_for_context( parent_context, comp_for, ) with context.predefine_names(comp_for, dct): try: yield from self._nested(comp_fors[1:], context) except IndexError: iterated = context.infer_node(self._entry_node) if self.array_type == 'dict': yield iterated, context.infer_node(self._value_node) else: yield iterated @inference_state_method_cache(default=[]) @to_list def _iterate(self): comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node)) yield from self._nested(comp_fors) def py__iter__(self, contextualized_node=None): for set_ in self._iterate(): yield LazyKnownValues(set_) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node) class _DictMixin: def _get_generics(self): return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values()) class Sequence(LazyAttributeOverwrite, IterableMixin): api_type = 'instance' @property def name(self): return compiled.CompiledValueName(self, self.array_type) def _get_generics(self): return (self.merge_types_of_iterate().py__class__(),) @inference_state_method_cache(default=()) def _cached_generics(self): return self._get_generics() def _get_wrapped_value(self): from jedi.inference.gradual.base import GenericClass from jedi.inference.gradual.generics import TupleGenericManager klass = compiled.builtin_from_name(self.inference_state, self.array_type) c, = GenericClass( klass, TupleGenericManager(self._cached_generics()) ).execute_annotation() return c def py__bool__(self): return None # We don't know the length, because of appends. @safe_property def parent(self): return self.inference_state.builtins_module def py__getitem__(self, index_value_set, contextualized_node): if self.array_type == 'dict': return self._dict_values() return iterate_values(ValueSet([self])) class _BaseComprehension(ComprehensionMixin): def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node): assert sync_comp_for_node.type == 'sync_comp_for' super().__init__(inference_state) self._defining_context = defining_context self._sync_comp_for_node = sync_comp_for_node self._entry_node = entry_node class ListComprehension(_BaseComprehension, Sequence): array_type = 'list' def py__simple_getitem__(self, index): if isinstance(index, slice): return ValueSet([self]) all_types = list(self.py__iter__()) with reraise_getitem_errors(IndexError, TypeError): lazy_value = all_types[index] return lazy_value.infer() class SetComprehension(_BaseComprehension, Sequence): array_type = 'set' class GeneratorComprehension(_BaseComprehension, GeneratorBase): pass class _DictKeyMixin: # TODO merge with _DictMixin? def get_mapping_item_values(self): return self._dict_keys(), self._dict_values() def get_key_values(self): # TODO merge with _dict_keys? return self._dict_keys() class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node): assert sync_comp_for_node.type == 'sync_comp_for' super().__init__(inference_state) self._defining_context = defining_context self._sync_comp_for_node = sync_comp_for_node self._entry_node = key_node self._value_node = value_node def py__iter__(self, contextualized_node=None): for keys, values in self._iterate(): yield LazyKnownValues(keys) def py__simple_getitem__(self, index): for keys, values in self._iterate(): for k in keys: # Be careful in the future if refactoring, index could be a # slice object. if k.get_safe_value(default=object()) == index: return values raise SimpleGetItemNotFound() def _dict_keys(self): return ValueSet.from_sets(keys for keys, values in self._iterate()) def _dict_values(self): return ValueSet.from_sets(values for keys, values in self._iterate()) @publish_method('values') def _imitate_values(self, arguments): lazy_value = LazyKnownValues(self._dict_values()) return ValueSet([FakeList(self.inference_state, [lazy_value])]) @publish_method('items') def _imitate_items(self, arguments): lazy_values = [ LazyKnownValue( FakeTuple( self.inference_state, [LazyKnownValues(key), LazyKnownValues(value)] ) ) for key, value in self._iterate() ] return ValueSet([FakeList(self.inference_state, lazy_values)]) def exact_key_items(self): # NOTE: A smarter thing can probably done here to achieve better # completions, but at least like this jedi doesn't crash return [] class SequenceLiteralValue(Sequence): _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist' mapping = {'(': 'tuple', '[': 'list', '{': 'set'} def __init__(self, inference_state, defining_context, atom): super().__init__(inference_state) self.atom = atom self._defining_context = defining_context if self.atom.type in self._TUPLE_LIKE: self.array_type = 'tuple' else: self.array_type = SequenceLiteralValue.mapping[atom.children[0]] """The builtin name of the array (list, set, tuple or dict).""" def _get_generics(self): if self.array_type == 'tuple': return tuple(x.infer().py__class__() for x in self.py__iter__()) return super()._get_generics() def py__simple_getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" if isinstance(index, slice): return ValueSet([self]) else: with reraise_getitem_errors(TypeError, KeyError, IndexError): node = self.get_tree_entries()[index] if node == ':' or node.type == 'subscript': return NO_VALUES return self._defining_context.infer_node(node) def py__iter__(self, contextualized_node=None): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ for node in self.get_tree_entries(): if node == ':' or node.type == 'subscript': # TODO this should probably use at least part of the code # of infer_subscript_list. yield LazyKnownValue(Slice(self._defining_context, None, None, None)) else: yield LazyTreeValue(self._defining_context, node) yield from check_array_additions(self._defining_context, self) def py__len__(self): # This function is not really used often. It's more of a try. return len(self.get_tree_entries()) def get_tree_entries(self): c = self.atom.children if self.atom.type in self._TUPLE_LIKE: return c[::2] array_node = c[1] if array_node in (']', '}', ')'): return [] # Direct closing bracket, doesn't contain items. if array_node.type == 'testlist_comp': # filter out (for now) pep 448 single-star unpacking return [value for value in array_node.children[::2] if value.type != "star_expr"] elif array_node.type == 'dictorsetmaker': kv = [] iterator = iter(array_node.children) for key in iterator: if key == "**": # dict with pep 448 double-star unpacking # for now ignoring the values imported by ** next(iterator) next(iterator, None) # Possible comma. else: op = next(iterator, None) if op is None or op == ',': if key.type == "star_expr": # pep 448 single-star unpacking # for now ignoring values imported by * pass else: kv.append(key) # A set. else: assert op == ':' # A dict. kv.append((key, next(iterator))) next(iterator, None) # Possible comma. return kv else: if array_node.type == "star_expr": # pep 448 single-star unpacking # for now ignoring values imported by * return [] else: return [array_node] def __repr__(self): return "<%s of %s>" % (self.__class__.__name__, self.atom) class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, defining_context, atom): # Intentionally don't call the super class. This is definitely a sign # that the architecture is bad and we should refactor. Sequence.__init__(self, inference_state) self._defining_context = defining_context self.atom = atom def py__simple_getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" compiled_value_index = compiled.create_simple_object(self.inference_state, index) for key, value in self.get_tree_entries(): for k in self._defining_context.infer_node(key): for key_v in k.execute_operation(compiled_value_index, '=='): if key_v.get_safe_value(): return self._defining_context.infer_node(value) raise SimpleGetItemNotFound('No key found in dictionary %s.' % self) def py__iter__(self, contextualized_node=None): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ # Get keys. types = NO_VALUES for k, _ in self.get_tree_entries(): types |= self._defining_context.infer_node(k) # We don't know which dict index comes first, therefore always # yield all the types. for _ in types: yield LazyKnownValues(types) @publish_method('values') def _imitate_values(self, arguments): lazy_value = LazyKnownValues(self._dict_values()) return ValueSet([FakeList(self.inference_state, [lazy_value])]) @publish_method('items') def _imitate_items(self, arguments): lazy_values = [ LazyKnownValue(FakeTuple( self.inference_state, (LazyTreeValue(self._defining_context, key_node), LazyTreeValue(self._defining_context, value_node)) )) for key_node, value_node in self.get_tree_entries() ] return ValueSet([FakeList(self.inference_state, lazy_values)]) def exact_key_items(self): """ Returns a generator of tuples like dict.items(), where the key is resolved (as a string) and the values are still lazy values. """ for key_node, value in self.get_tree_entries(): for key in self._defining_context.infer_node(key_node): if is_string(key): yield key.get_safe_value(), LazyTreeValue(self._defining_context, value) def _dict_values(self): return ValueSet.from_sets( self._defining_context.infer_node(v) for k, v in self.get_tree_entries() ) def _dict_keys(self): return ValueSet.from_sets( self._defining_context.infer_node(k) for k, v in self.get_tree_entries() ) class _FakeSequence(Sequence): def __init__(self, inference_state, lazy_value_list): """ type should be one of "tuple", "list" """ super().__init__(inference_state) self._lazy_value_list = lazy_value_list def py__simple_getitem__(self, index): if isinstance(index, slice): return ValueSet([self]) with reraise_getitem_errors(IndexError, TypeError): lazy_value = self._lazy_value_list[index] return lazy_value.infer() def py__iter__(self, contextualized_node=None): return self._lazy_value_list def py__bool__(self): return bool(len(self._lazy_value_list)) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._lazy_value_list) class FakeTuple(_FakeSequence): array_type = 'tuple' class FakeList(_FakeSequence): array_type = 'tuple' class FakeDict(_DictMixin, Sequence, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, dct): super().__init__(inference_state) self._dct = dct def py__iter__(self, contextualized_node=None): for key in self._dct: yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key)) def py__simple_getitem__(self, index): with reraise_getitem_errors(KeyError, TypeError): lazy_value = self._dct[index] return lazy_value.infer() @publish_method('values') def _values(self, arguments): return ValueSet([FakeTuple( self.inference_state, [LazyKnownValues(self._dict_values())] )]) def _dict_values(self): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values()) def _dict_keys(self): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def exact_key_items(self): return self._dct.items() def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self._dct) class MergedArray(Sequence): def __init__(self, inference_state, arrays): super().__init__(inference_state) self.array_type = arrays[-1].array_type self._arrays = arrays def py__iter__(self, contextualized_node=None): for array in self._arrays: yield from array.py__iter__() def py__simple_getitem__(self, index): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def unpack_tuple_to_dict(context, types, exprlist): """ Unpacking tuple assignments in for statements and expr_stmts. """ if exprlist.type == 'name': return {exprlist.value: types} elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['): return unpack_tuple_to_dict(context, types, exprlist.children[1]) elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist', 'testlist_star_expr'): dct = {} parts = iter(exprlist.children[::2]) n = 0 for lazy_value in types.iterate(ContextualizedNode(context, exprlist)): n += 1 try: part = next(parts) except StopIteration: analysis.add(context, 'value-error-too-many-values', part, message="ValueError: too many values to unpack (expected %s)" % n) else: dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part)) has_parts = next(parts, None) if types and has_parts is not None: analysis.add(context, 'value-error-too-few-values', has_parts, message="ValueError: need more than %s values to unpack" % n) return dct elif exprlist.type == 'power' or exprlist.type == 'atom_expr': # Something like ``arr[x], var = ...``. # This is something that is not yet supported, would also be difficult # to write into a dict. return {} elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings # Currently we're not supporting them. return {} raise NotImplementedError class Slice(LazyValueWrapper): def __init__(self, python_context, start, stop, step): self.inference_state = python_context.inference_state self._context = python_context # All of them are either a Precedence or None. self._start = start self._stop = stop self._step = step def _get_wrapped_value(self): value = compiled.builtin_from_name(self._context.inference_state, 'slice') slice_value, = value.execute_with_values() return slice_value def get_safe_value(self, default=sentinel): """ Imitate CompiledValue.obj behavior and return a ``builtin.slice()`` object. """ def get(element): if element is None: return None result = self._context.infer_node(element) if len(result) != 1: # For simplicity, we want slices to be clear defined with just # one type. Otherwise we will return an empty slice object. raise IndexError value, = result return get_int_or_none(value) try: return slice(get(self._start), get(self._stop), get(self._step)) except IndexError: return slice(None, None, None)