""" Used only for REPL Completion. """ import inspect from pathlib import Path from jedi.parser_utils import get_cached_code_lines from jedi import settings from jedi.cache import memoize_method from jedi.inference import compiled from jedi.file_io import FileIO from jedi.inference.names import NameWrapper from jedi.inference.base_value import ValueSet, ValueWrapper, NO_VALUES from jedi.inference.value import ModuleValue from jedi.inference.cache import inference_state_function_cache, \ inference_state_method_cache from jedi.inference.compiled.access import ALLOWED_GETITEM_TYPES, get_api_type from jedi.inference.gradual.conversion import to_stub from jedi.inference.context import CompiledContext, CompiledModuleContext, \ TreeContextMixin _sentinel = object() class MixedObject(ValueWrapper): """ A ``MixedObject`` is used in two ways: 1. It uses the default logic of ``parser.python.tree`` objects, 2. except for getattr calls and signatures. The names dicts are generated in a fashion like ``CompiledValue``. This combined logic makes it possible to provide more powerful REPL completion. It allows side effects that are not noticable with the default parser structure to still be completable. The biggest difference from CompiledValue to MixedObject is that we are generally dealing with Python code and not with C code. This will generate fewer special cases, because we in Python you don't have the same freedoms to modify the runtime. """ def __init__(self, compiled_value, tree_value): super().__init__(tree_value) self.compiled_value = compiled_value self.access_handle = compiled_value.access_handle def get_filters(self, *args, **kwargs): yield MixedObjectFilter( self.inference_state, self.compiled_value, self._wrapped_value) def get_signatures(self): # Prefer `inspect.signature` over somehow analyzing Python code. It # should be very precise, especially for stuff like `partial`. return self.compiled_value.get_signatures() @inference_state_method_cache(default=NO_VALUES) def py__call__(self, arguments): # Fallback to the wrapped value if to stub returns no values. values = to_stub(self._wrapped_value) if not values: values = self._wrapped_value return values.py__call__(arguments) def get_safe_value(self, default=_sentinel): if default is _sentinel: return self.compiled_value.get_safe_value() else: return self.compiled_value.get_safe_value(default) @property def array_type(self): return self.compiled_value.array_type def get_key_values(self): return self.compiled_value.get_key_values() def py__simple_getitem__(self, index): python_object = self.compiled_value.access_handle.access._obj if type(python_object) in ALLOWED_GETITEM_TYPES: return self.compiled_value.py__simple_getitem__(index) return self._wrapped_value.py__simple_getitem__(index) def negate(self): return self.compiled_value.negate() def _as_context(self): if self.parent_context is None: return MixedModuleContext(self) return MixedContext(self) def __repr__(self): return '<%s: %s; %s>' % ( type(self).__name__, self.access_handle.get_repr(), self._wrapped_value, ) class MixedContext(CompiledContext, TreeContextMixin): @property def compiled_value(self): return self._value.compiled_value class MixedModuleContext(CompiledModuleContext, MixedContext): pass class MixedName(NameWrapper): """ The ``CompiledName._compiled_value`` is our MixedObject. """ def __init__(self, wrapped_name, parent_tree_value): super().__init__(wrapped_name) self._parent_tree_value = parent_tree_value @property def start_pos(self): values = list(self.infer()) if not values: # This means a start_pos that doesn't exist (compiled objects). return 0, 0 return values[0].name.start_pos @memoize_method def infer(self): compiled_value = self._wrapped_name.infer_compiled_value() tree_value = self._parent_tree_value if tree_value.is_instance() or tree_value.is_class(): tree_values = tree_value.py__getattribute__(self.string_name) if compiled_value.is_function(): return ValueSet({MixedObject(compiled_value, v) for v in tree_values}) module_context = tree_value.get_root_context() return _create(self._inference_state, compiled_value, module_context) class MixedObjectFilter(compiled.CompiledValueFilter): def __init__(self, inference_state, compiled_value, tree_value): super().__init__(inference_state, compiled_value) self._tree_value = tree_value def _create_name(self, *args, **kwargs): return MixedName( super()._create_name(*args, **kwargs), self._tree_value, ) @inference_state_function_cache() def _load_module(inference_state, path): return inference_state.parse( path=path, cache=True, diff_cache=settings.fast_parser, cache_path=settings.cache_directory ).get_root_node() def _get_object_to_check(python_object): """Check if inspect.getfile has a chance to find the source.""" try: python_object = inspect.unwrap(python_object) except ValueError: # Can return a ValueError when it wraps around pass if (inspect.ismodule(python_object) or inspect.isclass(python_object) or inspect.ismethod(python_object) or inspect.isfunction(python_object) or inspect.istraceback(python_object) or inspect.isframe(python_object) or inspect.iscode(python_object)): return python_object try: return python_object.__class__ except AttributeError: raise TypeError # Prevents computation of `repr` within inspect. def _find_syntax_node_name(inference_state, python_object): original_object = python_object try: python_object = _get_object_to_check(python_object) path = inspect.getsourcefile(python_object) except (OSError, TypeError): # The type might not be known (e.g. class_with_dict.__weakref__) return None path = None if path is None else Path(path) try: if path is None or not path.exists(): # The path might not exist or be e.g. . return None except OSError: # Might raise an OSError on Windows: # # [WinError 123] The filename, directory name, or volume label # syntax is incorrect: '' return None file_io = FileIO(path) module_node = _load_module(inference_state, path) if inspect.ismodule(python_object): # We don't need to check names for modules, because there's not really # a way to write a module in a module in Python (and also __name__ can # be something like ``email.utils``). code_lines = get_cached_code_lines(inference_state.grammar, path) return module_node, module_node, file_io, code_lines try: name_str = python_object.__name__ except AttributeError: # Stuff like python_function.__code__. return None if name_str == '': return None # It's too hard to find lambdas. # Doesn't always work (e.g. os.stat_result) names = module_node.get_used_names().get(name_str, []) # Only functions and classes are relevant. If a name e.g. points to an # import, it's probably a builtin (like collections.deque) and needs to be # ignored. names = [ n for n in names if n.parent.type in ('funcdef', 'classdef') and n.parent.name == n ] if not names: return None try: code = python_object.__code__ # By using the line number of a code object we make the lookup in a # file pretty easy. There's still a possibility of people defining # stuff like ``a = 3; foo(a); a = 4`` on the same line, but if people # do so we just don't care. line_nr = code.co_firstlineno except AttributeError: pass else: line_names = [name for name in names if name.start_pos[0] == line_nr] # There's a chance that the object is not available anymore, because # the code has changed in the background. if line_names: names = line_names code_lines = get_cached_code_lines(inference_state.grammar, path) # It's really hard to actually get the right definition, here as a last # resort we just return the last one. This chance might lead to odd # completions at some points but will lead to mostly correct type # inference, because people tend to define a public name in a module only # once. tree_node = names[-1].parent if tree_node.type == 'funcdef' and get_api_type(original_object) == 'instance': # If an instance is given and we're landing on a function (e.g. # partial in 3.5), something is completely wrong and we should not # return that. return None return module_node, tree_node, file_io, code_lines @inference_state_function_cache() def _create(inference_state, compiled_value, module_context): # TODO accessing this is bad, but it probably doesn't matter that much, # because we're working with interpreters only here. python_object = compiled_value.access_handle.access._obj result = _find_syntax_node_name(inference_state, python_object) if result is None: # TODO Care about generics from stuff like `[1]` and don't return like this. if type(python_object) in (dict, list, tuple): return ValueSet({compiled_value}) tree_values = to_stub(compiled_value) if not tree_values: return ValueSet({compiled_value}) else: module_node, tree_node, file_io, code_lines = result if module_context is None or module_context.tree_node != module_node: root_compiled_value = compiled_value.get_root_context().get_value() # TODO this __name__ might be wrong. name = root_compiled_value.py__name__() string_names = tuple(name.split('.')) module_value = ModuleValue( inference_state, module_node, file_io=file_io, string_names=string_names, code_lines=code_lines, is_package=root_compiled_value.is_package(), ) if name is not None: inference_state.module_cache.add(string_names, ValueSet([module_value])) module_context = module_value.as_context() tree_values = ValueSet({module_context.create_value(tree_node)}) if tree_node.type == 'classdef': if not compiled_value.is_class(): # Is an instance, not a class. tree_values = tree_values.execute_with_values() return ValueSet( MixedObject(compiled_value, tree_value=tree_value) for tree_value in tree_values )