""" Created on Sat Mar 13 07:56:22 2010 Author: josef-pktd """ import sympy as sy def pdf(x, mu, sigma): """Return the probability density function as an expression in x""" #x = sy.sympify(x) return 1/(sigma*sy.sqrt(2*sy.pi)) * sy.exp(-(x-mu)**2 / (2*sigma**2)) def cdf(x, mu, sigma): """Return the cumulative density function as an expression in x""" #x = sy.sympify(x) return (1+sy.erf((x-mu)/(sigma*sy.sqrt(2))))/2 mu = sy.Symbol('mu') sigma = sy.Symbol('sigma') sigma2 = sy.Symbol('sigma2') x = sy.Symbol('x') y = sy.Symbol('y') df = sy.Symbol('df') s = sy.Symbol('s') dldxnorm = sy.log(pdf(x, mu,sigma)).diff(x) print(sy.simplify(dldxnorm)) print(sy.diff(sy.log(sy.gamma((s+1)/2)),s)) print(sy.diff((df+1)/2. * sy.log(1+df/(df-2)), df)) #standard t distribution, not verified tllf1 = sy.log(sy.gamma((df+1)/2.)) - sy.log(sy.gamma(df/2.)) - 0.5*sy.log((df)*sy.pi) tllf2 = (df+1.)/2. * sy.log(1. + (y-mu)**2/(df)/sigma2) + 0.5 * sy.log(sigma2) tllf2std = (df+1.)/2. * sy.log(1. + y**2/df) + 0.5 tllf = tllf1 - tllf2 print(tllf1.diff(df)) print(tllf2.diff(y)) dlddf = (tllf1-tllf2).diff(df) print(dlddf) print(sy.cse(dlddf)) print('\n derivative of loglike of t distribution wrt df') for k,v in sy.cse(dlddf)[0]: print(k, '=', v) print(sy.cse(dlddf)[1][0]) print('\nstandard t distribution, dll_df, dll_dy') tllfstd = tllf1 - tllf2std print(tllfstd.diff(df)) print(tllfstd.diff(y)) print('\n') print(dlddf.subs(dict(y=1,mu=1,sigma2=1.5,df=10.0001))) print(dlddf.subs(dict(y=1,mu=1,sigma2=1.5,df=10.0001)).evalf()) # Note: derivatives of nested function does not work in sympy # at least not higher order derivatives (second or larger) # looks like print(failure