''' Bspines and smoothing splines. General references: Craven, P. and Wahba, G. (1978) "Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation." Numerische Mathematik, 31(4), 377-403. Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical Learning." Springer-Verlag. 536 pages. Hutchison, M. and Hoog, F. "Smoothing noisy data with spline functions." Numerische Mathematik, 47(1), 99-106. ''' import numpy as np import numpy.linalg as L from scipy.linalg import solveh_banded from scipy.optimize import golden from models import _hbspline #removed because this was segfaulting # Issue warning regarding heavy development status of this module import warnings _msg = """ The bspline code is technology preview and requires significant work on the public API and documentation. The API will likely change in the future """ warnings.warn(_msg, FutureWarning) def _band2array(a, lower=0, symmetric=False, hermitian=False): """ Take an upper or lower triangular banded matrix and return a numpy array. INPUTS: a -- a matrix in upper or lower triangular banded matrix lower -- is the matrix upper or lower triangular? symmetric -- if True, return the original result plus its transpose hermitian -- if True (and symmetric False), return the original result plus its conjugate transposed """ n = a.shape[1] r = a.shape[0] _a = 0 if not lower: for j in range(r): _b = np.diag(a[r-1-j],k=j)[j:(n+j),j:(n+j)] _a += _b if symmetric and j > 0: _a += _b.T elif hermitian and j > 0: _a += _b.conjugate().T else: for j in range(r): _b = np.diag(a[j],k=j)[0:n,0:n] _a += _b if symmetric and j > 0: _a += _b.T elif hermitian and j > 0: _a += _b.conjugate().T _a = _a.T return _a def _upper2lower(ub): """ Convert upper triangular banded matrix to lower banded form. INPUTS: ub -- an upper triangular banded matrix OUTPUTS: lb lb -- a lower triangular banded matrix with same entries as ub """ lb = np.zeros(ub.shape, ub.dtype) nrow, ncol = ub.shape for i in range(ub.shape[0]): lb[i,0:(ncol-i)] = ub[nrow-1-i,i:ncol] lb[i,(ncol-i):] = ub[nrow-1-i,0:i] return lb def _lower2upper(lb): """ Convert lower triangular banded matrix to upper banded form. INPUTS: lb -- a lower triangular banded matrix OUTPUTS: ub ub -- an upper triangular banded matrix with same entries as lb """ ub = np.zeros(lb.shape, lb.dtype) nrow, ncol = lb.shape for i in range(lb.shape[0]): ub[nrow-1-i,i:ncol] = lb[i,0:(ncol-i)] ub[nrow-1-i,0:i] = lb[i,(ncol-i):] return ub def _triangle2unit(tb, lower=0): """ Take a banded triangular matrix and return its diagonal and the unit matrix: the banded triangular matrix with 1's on the diagonal, i.e. each row is divided by the corresponding entry on the diagonal. INPUTS: tb -- a lower triangular banded matrix lower -- if True, then tb is assumed to be lower triangular banded, in which case return value is also lower triangular banded. OUTPUTS: d, b d -- diagonal entries of tb b -- unit matrix: if lower is False, b is upper triangular banded and its rows of have been divided by d, else lower is True, b is lower triangular banded and its columns have been divieed by d. """ if lower: d = tb[0].copy() else: d = tb[-1].copy() if lower: return d, (tb / d) else: lnum = _upper2lower(tb) return d, _lower2upper(lnum / d) def _trace_symbanded(a, b, lower=0): """ Compute the trace(ab) for two upper or banded real symmetric matrices stored either in either upper or lower form. INPUTS: a, b -- two banded real symmetric matrices (either lower or upper) lower -- if True, a and b are assumed to be the lower half OUTPUTS: trace trace -- trace(ab) """ if lower: t = _zero_triband(a * b, lower=1) return t[0].sum() + 2 * t[1:].sum() else: t = _zero_triband(a * b, lower=0) return t[-1].sum() + 2 * t[:-1].sum() def _zero_triband(a, lower=0): """ Explicitly zero out unused elements of a real symmetric banded matrix. INPUTS: a -- a real symmetric banded matrix (either upper or lower hald) lower -- if True, a is assumed to be the lower half """ nrow, ncol = a.shape if lower: for i in range(nrow): a[i, (ncol-i):] = 0. else: for i in range(nrow): a[i, 0:i] = 0. return a class BSpline: ''' Bsplines of a given order and specified knots. Implementation is based on description in Chapter 5 of Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical Learning." Springer-Verlag. 536 pages. INPUTS: knots -- a sorted array of knots with knots[0] the lower boundary, knots[1] the upper boundary and knots[1:-1] the internal knots. order -- order of the Bspline, default is 4 which yields cubic splines M -- number of additional boundary knots, if None it defaults to order coef -- an optional array of real-valued coefficients for the Bspline of shape (knots.shape + 2 * (M - 1) - order,). x -- an optional set of x values at which to evaluate the Bspline to avoid extra evaluation in the __call__ method ''' # FIXME: update parameter names, replace single character names # FIXME: `order` should be actual spline order (implemented as order+1) ## FIXME: update the use of spline order in extension code (evaluate is recursively called) # FIXME: eliminate duplicate M and m attributes (m is order, M is related to tau size) def __init__(self, knots, order=4, M=None, coef=None, x=None): knots = np.squeeze(np.unique(np.asarray(knots))) if knots.ndim != 1: raise ValueError('expecting 1d array for knots') self.m = order if M is None: M = self.m self.M = M self.tau = np.hstack([[knots[0]]*(self.M-1), knots, [knots[-1]]*(self.M-1)]) self.K = knots.shape[0] - 2 if coef is None: self.coef = np.zeros((self.K + 2 * self.M - self.m), np.float64) else: self.coef = np.squeeze(coef) if self.coef.shape != (self.K + 2 * self.M - self.m): raise ValueError('coefficients of Bspline have incorrect shape') if x is not None: self.x = x def _setx(self, x): self._x = x self._basisx = self.basis(self._x) def _getx(self): return self._x x = property(_getx, _setx) def __call__(self, *args): """ Evaluate the BSpline at a given point, yielding a matrix B and return B * self.coef INPUTS: args -- optional arguments. If None, it returns self._basisx, the BSpline evaluated at the x values passed in __init__. Otherwise, return the BSpline evaluated at the first argument args[0]. OUTPUTS: y y -- value of Bspline at specified x values BUGS: If self has no attribute x, an exception will be raised because self has no attribute _basisx. """ if not args: b = self._basisx.T else: x = args[0] b = np.asarray(self.basis(x)).T return np.squeeze(np.dot(b, self.coef)) def basis_element(self, x, i, d=0): """ Evaluate a particular basis element of the BSpline, or its derivative. INPUTS: x -- x values at which to evaluate the basis element i -- which element of the BSpline to return d -- the order of derivative OUTPUTS: y y -- value of d-th derivative of the i-th basis element of the BSpline at specified x values """ x = np.asarray(x, np.float64) _shape = x.shape if _shape == (): x.shape = (1,) x.shape = (np.product(_shape,axis=0),) if i < self.tau.shape[0] - 1: # TODO: OWNDATA flags... v = _hbspline.evaluate(x, self.tau, self.m, d, i, i+1) else: return np.zeros(x.shape, np.float64) if (i == self.tau.shape[0] - self.m): v = np.where(np.equal(x, self.tau[-1]), 1, v) v.shape = _shape return v def basis(self, x, d=0, lower=None, upper=None): """ Evaluate the basis of the BSpline or its derivative. If lower or upper is specified, then only the [lower:upper] elements of the basis are returned. INPUTS: x -- x values at which to evaluate the basis element i -- which element of the BSpline to return d -- the order of derivative lower -- optional lower limit of the set of basis elements upper -- optional upper limit of the set of basis elements OUTPUTS: y y -- value of d-th derivative of the basis elements of the BSpline at specified x values """ x = np.asarray(x) _shape = x.shape if _shape == (): x.shape = (1,) x.shape = (np.product(_shape,axis=0),) if upper is None: upper = self.tau.shape[0] - self.m if lower is None: lower = 0 upper = min(upper, self.tau.shape[0] - self.m) lower = max(0, lower) d = np.asarray(d) if d.shape == (): v = _hbspline.evaluate(x, self.tau, self.m, int(d), lower, upper) else: if d.shape[0] != 2: raise ValueError("if d is not an integer, expecting a jx2 \ array with first row indicating order \ of derivative, second row coefficient in front.") v = 0 for i in range(d.shape[1]): v += d[1,i] * _hbspline.evaluate(x, self.tau, self.m, d[0,i], lower, upper) v.shape = (upper-lower,) + _shape if upper == self.tau.shape[0] - self.m: v[-1] = np.where(np.equal(x, self.tau[-1]), 1, v[-1]) return v def gram(self, d=0): """ Compute Gram inner product matrix, storing it in lower triangular banded form. The (i,j) entry is G_ij = integral b_i^(d) b_j^(d) where b_i are the basis elements of the BSpline and (d) is the d-th derivative. If d is a matrix then, it is assumed to specify a differential operator as follows: the first row represents the order of derivative with the second row the coefficient corresponding to that order. For instance: [[2, 3], [3, 1]] represents 3 * f^(2) + 1 * f^(3). INPUTS: d -- which derivative to apply to each basis element, if d is a matrix, it is assumed to specify a differential operator as above OUTPUTS: gram gram -- the matrix of inner products of (derivatives) of the BSpline elements """ d = np.squeeze(d) if np.asarray(d).shape == (): self.g = _hbspline.gram(self.tau, self.m, int(d), int(d)) else: d = np.asarray(d) if d.shape[0] != 2: raise ValueError("if d is not an integer, expecting a jx2 \ array with first row indicating order \ of derivative, second row coefficient in front.") if d.shape == (2,): d.shape = (2,1) self.g = 0 for i in range(d.shape[1]): for j in range(d.shape[1]): self.g += d[1,i]* d[1,j] * _hbspline.gram(self.tau, self.m, int(d[0,i]), int(d[0,j])) self.g = self.g.T self.d = d return np.nan_to_num(self.g) class SmoothingSpline(BSpline): penmax = 30. method = "target_df" target_df = 5 default_pen = 1.0e-03 optimize = True ''' A smoothing spline, which can be used to smooth scatterplots, i.e. a list of (x,y) tuples. See fit method for more information. ''' def fit(self, y, x=None, weights=None, pen=0.): """ Fit the smoothing spline to a set of (x,y) pairs. INPUTS: y -- response variable x -- if None, uses self.x weights -- optional array of weights pen -- constant in front of Gram matrix OUTPUTS: None The smoothing spline is determined by self.coef, subsequent calls of __call__ will be the smoothing spline. ALGORITHM: Formally, this solves a minimization: fhat = ARGMIN_f SUM_i=1^n (y_i-f(x_i))^2 + pen * int f^(2)^2 int is integral. pen is lambda (from Hastie) See Chapter 5 of Hastie, Tibshirani and Friedman (2001). "The Elements of Statistical Learning." Springer-Verlag. 536 pages. for more details. TODO: Should add arbitrary derivative penalty instead of just second derivative. """ banded = True if x is None: x = self._x bt = self._basisx.copy() else: bt = self.basis(x) if pen == 0.: # cannot use cholesky for singular matrices banded = False if x.shape != y.shape: raise ValueError('x and y shape do not agree, by default x are \ the Bspline\'s internal knots') if pen >= self.penmax: pen = self.penmax if weights is not None: self.weights = weights else: self.weights = 1. _w = np.sqrt(self.weights) bt *= _w # throw out rows with zeros (this happens at boundary points!) mask = np.flatnonzero(1 - np.all(np.equal(bt, 0), axis=0)) bt = bt[:,mask] y = y[mask] self.df_total = y.shape[0] bty = np.squeeze(np.dot(bt, _w * y)) self.N = y.shape[0] if not banded: self.btb = np.dot(bt, bt.T) _g = _band2array(self.g, lower=1, symmetric=True) self.coef, _, self.rank = L.lstsq(self.btb + pen*_g, bty)[0:3] self.rank = min(self.rank, self.btb.shape[0]) del _g else: self.btb = np.zeros(self.g.shape, np.float64) nband, nbasis = self.g.shape for i in range(nbasis): for k in range(min(nband, nbasis-i)): self.btb[k,i] = (bt[i] * bt[i+k]).sum() bty.shape = (1,bty.shape[0]) self.pen = pen self.chol, self.coef = solveh_banded(self.btb + pen*self.g, bty, lower=1) self.coef = np.squeeze(self.coef) self.resid = y * self.weights - np.dot(self.coef, bt) self.pen = pen del bty del mask del bt def smooth(self, y, x=None, weights=None): if self.method == "target_df": if hasattr(self, 'pen'): self.fit(y, x=x, weights=weights, pen=self.pen) else: self.fit_target_df(y, x=x, weights=weights, df=self.target_df) elif self.method == "optimize_gcv": self.fit_optimize_gcv(y, x=x, weights=weights) def gcv(self): """ Generalized cross-validation score of current fit. Craven, P. and Wahba, G. "Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation." Numerische Mathematik, 31(4), 377-403. """ norm_resid = (self.resid**2).sum() return norm_resid / (self.df_total - self.trace()) def df_resid(self): """ Residual degrees of freedom in the fit. self.N - self.trace() where self.N is the number of observations of last fit. """ return self.N - self.trace() def df_fit(self): """ How many degrees of freedom used in the fit? self.trace() """ return self.trace() def trace(self): """ Trace of the smoothing matrix S(pen) TODO: addin a reference to Wahba, and whoever else I used. """ if self.pen > 0: _invband = _hbspline.invband(self.chol.copy()) tr = _trace_symbanded(_invband, self.btb, lower=1) return tr else: return self.rank def fit_target_df(self, y, x=None, df=None, weights=None, tol=1.0e-03, apen=0, bpen=1.0e-03): """ Fit smoothing spline with approximately df degrees of freedom used in the fit, i.e. so that self.trace() is approximately df. Uses binary search strategy. In general, df must be greater than the dimension of the null space of the Gram inner product. For cubic smoothing splines, this means that df > 2. INPUTS: y -- response variable x -- if None, uses self.x df -- target degrees of freedom weights -- optional array of weights tol -- (relative) tolerance for convergence apen -- lower bound of penalty for binary search bpen -- upper bound of penalty for binary search OUTPUTS: None The smoothing spline is determined by self.coef, subsequent calls of __call__ will be the smoothing spline. """ df = df or self.target_df olddf = y.shape[0] - self.m if hasattr(self, "pen"): self.fit(y, x=x, weights=weights, pen=self.pen) curdf = self.trace() if np.fabs(curdf - df) / df < tol: return if curdf > df: apen, bpen = self.pen, 2 * self.pen else: apen, bpen = 0., self.pen while True: curpen = 0.5 * (apen + bpen) self.fit(y, x=x, weights=weights, pen=curpen) curdf = self.trace() if curdf > df: apen, bpen = curpen, 2 * curpen else: apen, bpen = apen, curpen if apen >= self.penmax: raise ValueError("penalty too large, try setting penmax \ higher or decreasing df") if np.fabs(curdf - df) / df < tol: break def fit_optimize_gcv(self, y, x=None, weights=None, tol=1.0e-03, brack=(-100,20)): """ Fit smoothing spline trying to optimize GCV. Try to find a bracketing interval for scipy.optimize.golden based on bracket. It is probably best to use target_df instead, as it is sometimes difficult to find a bracketing interval. INPUTS: y -- response variable x -- if None, uses self.x df -- target degrees of freedom weights -- optional array of weights tol -- (relative) tolerance for convergence brack -- an initial guess at the bracketing interval OUTPUTS: None The smoothing spline is determined by self.coef, subsequent calls of __call__ will be the smoothing spline. """ def _gcv(pen, y, x): self.fit(y, x=x, pen=np.exp(pen)) a = self.gcv() return a a = golden(_gcv, args=(y,x), brack=brack, tol=tol)