from __future__ import annotations from dataclasses import dataclass from typing import ClassVar import numpy as np import pandas as pd from pandas import DataFrame from seaborn._core.groupby import GroupBy from seaborn._core.scales import Scale from seaborn._stats.base import Stat from typing import TYPE_CHECKING if TYPE_CHECKING: from numpy.typing import ArrayLike @dataclass class Count(Stat): """ Count distinct observations within groups. See Also -------- Hist : A more fully-featured transform including binning and/or normalization. Examples -------- .. include:: ../docstrings/objects.Count.rst """ group_by_orient: ClassVar[bool] = True def __call__( self, data: DataFrame, groupby: GroupBy, orient: str, scales: dict[str, Scale], ) -> DataFrame: var = {"x": "y", "y": "x"}[orient] res = ( groupby .agg(data.assign(**{var: data[orient]}), {var: len}) .dropna(subset=["x", "y"]) .reset_index(drop=True) ) return res @dataclass class Hist(Stat): """ Bin observations, count them, and optionally normalize or cumulate. Parameters ---------- stat : str Aggregate statistic to compute in each bin: - `count`: the number of observations - `density`: normalize so that the total area of the histogram equals 1 - `percent`: normalize so that bar heights sum to 100 - `probability` or `proportion`: normalize so that bar heights sum to 1 - `frequency`: divide the number of observations by the bin width bins : str, int, or ArrayLike Generic parameter that can be the name of a reference rule, the number of bins, or the bin breaks. Passed to :func:`numpy.histogram_bin_edges`. binwidth : float Width of each bin; overrides `bins` but can be used with `binrange`. Note that if `binwidth` does not evenly divide the bin range, the actual bin width used will be only approximately equal to the parameter value. binrange : (min, max) Lowest and highest value for bin edges; can be used with either `bins` (when a number) or `binwidth`. Defaults to data extremes. common_norm : bool or list of variables When not `False`, the normalization is applied across groups. Use `True` to normalize across all groups, or pass variable name(s) that define normalization groups. common_bins : bool or list of variables When not `False`, the same bins are used for all groups. Use `True` to share bins across all groups, or pass variable name(s) to share within. cumulative : bool If True, cumulate the bin values. discrete : bool If True, set `binwidth` and `binrange` so that bins have unit width and are centered on integer values Notes ----- The choice of bins for computing and plotting a histogram can exert substantial influence on the insights that one is able to draw from the visualization. If the bins are too large, they may erase important features. On the other hand, bins that are too small may be dominated by random variability, obscuring the shape of the true underlying distribution. The default bin size is determined using a reference rule that depends on the sample size and variance. This works well in many cases, (i.e., with "well-behaved" data) but it fails in others. It is always a good to try different bin sizes to be sure that you are not missing something important. This function allows you to specify bins in several different ways, such as by setting the total number of bins to use, the width of each bin, or the specific locations where the bins should break. Examples -------- .. include:: ../docstrings/objects.Hist.rst """ stat: str = "count" bins: str | int | ArrayLike = "auto" binwidth: float | None = None binrange: tuple[float, float] | None = None common_norm: bool | list[str] = True common_bins: bool | list[str] = True cumulative: bool = False discrete: bool = False def __post_init__(self): stat_options = [ "count", "density", "percent", "probability", "proportion", "frequency" ] self._check_param_one_of("stat", stat_options) def _define_bin_edges(self, vals, weight, bins, binwidth, binrange, discrete): """Inner function that takes bin parameters as arguments.""" vals = vals.replace(-np.inf, np.nan).replace(np.inf, np.nan).dropna() if binrange is None: start, stop = vals.min(), vals.max() else: start, stop = binrange if discrete: bin_edges = np.arange(start - .5, stop + 1.5) else: if binwidth is not None: bins = int(round((stop - start) / binwidth)) bin_edges = np.histogram_bin_edges(vals, bins, binrange, weight) # TODO warning or cap on too many bins? return bin_edges def _define_bin_params(self, data, orient, scale_type): """Given data, return numpy.histogram parameters to define bins.""" vals = data[orient] weights = data.get("weight", None) # TODO We'll want this for ordinal / discrete scales too # (Do we need discrete as a parameter or just infer from scale?) discrete = self.discrete or scale_type == "nominal" bin_edges = self._define_bin_edges( vals, weights, self.bins, self.binwidth, self.binrange, discrete, ) if isinstance(self.bins, (str, int)): n_bins = len(bin_edges) - 1 bin_range = bin_edges.min(), bin_edges.max() bin_kws = dict(bins=n_bins, range=bin_range) else: bin_kws = dict(bins=bin_edges) return bin_kws def _get_bins_and_eval(self, data, orient, groupby, scale_type): bin_kws = self._define_bin_params(data, orient, scale_type) return groupby.apply(data, self._eval, orient, bin_kws) def _eval(self, data, orient, bin_kws): vals = data[orient] weights = data.get("weight", None) density = self.stat == "density" hist, edges = np.histogram(vals, **bin_kws, weights=weights, density=density) width = np.diff(edges) center = edges[:-1] + width / 2 return pd.DataFrame({orient: center, "count": hist, "space": width}) def _normalize(self, data): hist = data["count"] if self.stat == "probability" or self.stat == "proportion": hist = hist.astype(float) / hist.sum() elif self.stat == "percent": hist = hist.astype(float) / hist.sum() * 100 elif self.stat == "frequency": hist = hist.astype(float) / data["space"] if self.cumulative: if self.stat in ["density", "frequency"]: hist = (hist * data["space"]).cumsum() else: hist = hist.cumsum() return data.assign(**{self.stat: hist}) def __call__( self, data: DataFrame, groupby: GroupBy, orient: str, scales: dict[str, Scale], ) -> DataFrame: scale_type = scales[orient].__class__.__name__.lower() grouping_vars = [str(v) for v in data if v in groupby.order] if not grouping_vars or self.common_bins is True: bin_kws = self._define_bin_params(data, orient, scale_type) data = groupby.apply(data, self._eval, orient, bin_kws) else: if self.common_bins is False: bin_groupby = GroupBy(grouping_vars) else: bin_groupby = GroupBy(self.common_bins) self._check_grouping_vars("common_bins", grouping_vars) data = bin_groupby.apply( data, self._get_bins_and_eval, orient, groupby, scale_type, ) if not grouping_vars or self.common_norm is True: data = self._normalize(data) else: if self.common_norm is False: norm_groupby = GroupBy(grouping_vars) else: norm_groupby = GroupBy(self.common_norm) self._check_grouping_vars("common_norm", grouping_vars) data = norm_groupby.apply(data, self._normalize) other = {"x": "y", "y": "x"}[orient] return data.assign(**{other: data[self.stat]})