""" One of the really important features of |jedi| is to have an option to understand code like this:: def foo(bar): bar. # completion here foo(1) There's no doubt wheter bar is an ``int`` or not, but if there's also a call like ``foo('str')``, what would happen? Well, we'll just show both. Because that's what a human would expect. It works as follows: - |Jedi| sees a param - search for function calls named ``foo`` - execute these calls and check the input. """ from jedi import settings from jedi import debug from jedi.parser_utils import get_parent_scope from jedi.inference.cache import inference_state_method_cache from jedi.inference.arguments import TreeArguments from jedi.inference.param import get_executed_param_names from jedi.inference.helpers import is_stdlib_path from jedi.inference.utils import to_list from jedi.inference.value import instance from jedi.inference.base_value import ValueSet, NO_VALUES from jedi.inference.references import get_module_contexts_containing_name from jedi.inference import recursion MAX_PARAM_SEARCHES = 20 def _avoid_recursions(func): def wrapper(function_value, param_index): inf = function_value.inference_state with recursion.execution_allowed(inf, function_value.tree_node) as allowed: # We need to catch recursions that may occur, because an # anonymous functions can create an anonymous parameter that is # more or less self referencing. if allowed: inf.dynamic_params_depth += 1 try: return func(function_value, param_index) finally: inf.dynamic_params_depth -= 1 return NO_VALUES return wrapper @debug.increase_indent @_avoid_recursions def dynamic_param_lookup(function_value, param_index): """ A dynamic search for param values. If you try to complete a type: >>> def func(foo): ... foo >>> func(1) >>> func("") It is not known what the type ``foo`` without analysing the whole code. You have to look for all calls to ``func`` to find out what ``foo`` possibly is. """ if not function_value.inference_state.do_dynamic_params_search: return NO_VALUES funcdef = function_value.tree_node path = function_value.get_root_context().py__file__() if path is not None and is_stdlib_path(path): # We don't want to search for references in the stdlib. Usually people # don't work with it (except if you are a core maintainer, sorry). # This makes everything slower. Just disable it and run the tests, # you will see the slowdown, especially in 3.6. return NO_VALUES if funcdef.type == 'lambdef': string_name = _get_lambda_name(funcdef) if string_name is None: return NO_VALUES else: string_name = funcdef.name.value debug.dbg('Dynamic param search in %s.', string_name, color='MAGENTA') module_context = function_value.get_root_context() arguments_list = _search_function_arguments(module_context, funcdef, string_name) values = ValueSet.from_sets( get_executed_param_names( function_value, arguments )[param_index].infer() for arguments in arguments_list ) debug.dbg('Dynamic param result finished', color='MAGENTA') return values @inference_state_method_cache(default=None) @to_list def _search_function_arguments(module_context, funcdef, string_name): """ Returns a list of param names. """ compare_node = funcdef if string_name == '__init__': cls = get_parent_scope(funcdef) if cls.type == 'classdef': string_name = cls.name.value compare_node = cls found_arguments = False i = 0 inference_state = module_context.inference_state if settings.dynamic_params_for_other_modules: module_contexts = get_module_contexts_containing_name( inference_state, [module_context], string_name, # Limit the amounts of files to be opened massively. limit_reduction=5, ) else: module_contexts = [module_context] for for_mod_context in module_contexts: for name, trailer in _get_potential_nodes(for_mod_context, string_name): i += 1 # This is a simple way to stop Jedi's dynamic param recursion # from going wild: The deeper Jedi's in the recursion, the less # code should be inferred. if i * inference_state.dynamic_params_depth > MAX_PARAM_SEARCHES: return random_context = for_mod_context.create_context(name) for arguments in _check_name_for_execution( inference_state, random_context, compare_node, name, trailer): found_arguments = True yield arguments # If there are results after processing a module, we're probably # good to process. This is a speed optimization. if found_arguments: return def _get_lambda_name(node): stmt = node.parent if stmt.type == 'expr_stmt': first_operator = next(stmt.yield_operators(), None) if first_operator == '=': first = stmt.children[0] if first.type == 'name': return first.value return None def _get_potential_nodes(module_value, func_string_name): try: names = module_value.tree_node.get_used_names()[func_string_name] except KeyError: return for name in names: bracket = name.get_next_leaf() trailer = bracket.parent if trailer.type == 'trailer' and bracket == '(': yield name, trailer def _check_name_for_execution(inference_state, context, compare_node, name, trailer): from jedi.inference.value.function import BaseFunctionExecutionContext def create_args(value): arglist = trailer.children[1] if arglist == ')': arglist = None args = TreeArguments(inference_state, context, arglist, trailer) from jedi.inference.value.instance import InstanceArguments if value.tree_node.type == 'classdef': created_instance = instance.TreeInstance( inference_state, value.parent_context, value, args ) return InstanceArguments(created_instance, args) else: if value.is_bound_method(): args = InstanceArguments(value.instance, args) return args for value in inference_state.infer(context, name): value_node = value.tree_node if compare_node == value_node: yield create_args(value) elif isinstance(value.parent_context, BaseFunctionExecutionContext) \ and compare_node.type == 'funcdef': # Here we're trying to find decorators by checking the first # parameter. It's not very generic though. Should find a better # solution that also applies to nested decorators. param_names = value.parent_context.get_param_names() if len(param_names) != 1: continue values = param_names[0].infer() if [v.tree_node for v in values] == [compare_node]: # Found a decorator. module_context = context.get_root_context() execution_context = value.as_context(create_args(value)) potential_nodes = _get_potential_nodes(module_context, param_names[0].string_name) for name, trailer in potential_nodes: if value_node.start_pos < name.start_pos < value_node.end_pos: random_context = execution_context.create_context(name) yield from _check_name_for_execution( inference_state, random_context, compare_node, name, trailer )